Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heterogeneous catalysis plays an indispensable role in chemical production and energy conversion. Incorporation of transition metals into metal oxides and zeolites is a common strategy to fine-tune the activity and selectivity of the resulting solid catalysts, as either the active center or promotor. Studying the underlying mechanism is however challenging. Decorating the metal-oxo clusters with transition metals in metal-organic frameworks (MOFs) via postsynthetic modification offers a rational approach to construct well-defined structural models for better understanding of the reaction mechanism. Therefore, it is important to expand the materials scope beyond the currently widely studied zirconium MOFs consisting of Zr nodes. In this work, we report the design and synthesis of a new (4,12)-connected Zr-MOF with topology that consists of rare Zr nodes. Fe was further incorporated onto the Zr nodes of the framework, and the resulting MOF material exhibits significantly enhanced activity and selectivity toward the photocatalytic oxidation of toluene. This work demonstrates a delicate ligand design strategy to control the nuclearity of Zr-oxo clusters, which further dictates the number and binding sites of transition metals and the overall photocatalytic activity toward C-H activation. Our work paves the way for future exploration of the structure-activity study of catalysts using MOFs as the model system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636760PMC
http://dx.doi.org/10.1021/jacs.3c07237DOI Listing

Publication Analysis

Top Keywords

transition metals
12
postsynthetic modification
8
photocatalytic oxidation
8
activity selectivity
8
modification nonanuclear
4
nonanuclear node
4
node zirconium
4
zirconium metal-organic
4
metal-organic framework
4
framework photocatalytic
4

Similar Publications

Surveillance monitoring of shallow groundwater revealed that redox conditions can vary on a small scale. Therefore, the aim of this study was to categorize redox conditions in the groundwater of Lower Saxony, Germany, and to analyze the spatial distribution and trends of parameters related to redox conditions during surveillance monitoring from 1957 to 2015 in Lower Saxony, Germany. Methodically, trends were considered by applying the Mann-Kendall test and redox conditions of groundwater were classified according to the scheme of Jurgens et al.

View Article and Find Full Text PDF

Ischemic stroke (IS) has high morbidity/mortality with limited treatments. This study screened core copper homeostasis-related genes in IS and validated their function as precise intervention targets. Human IS gene chip data were retrieved from GEO, and copper homeostasis genes from multiple databases.

View Article and Find Full Text PDF

Background: The prognosis of small-cell lung cancer (SCLC) remains poor, particularly in patients with extensive-stage SCLC. The IMpower133 and CASPIAN trials revealed the efficacy of immune checkpoint inhibitors (ICIs) in extensive-stage SCLC patients with good performance status (PS). The aim of this study was to investigate the efficacy of ICIs in patients with poor PS.

View Article and Find Full Text PDF

Solvothermal synthesis of PtPb nanoparticles with efficient alcohol oxidation performance.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Precious metal nanomaterials have demonstrated significant advantages in the field of alcohol electro-catalytic oxidation. In this study, the inexpensive main group metals lead (Pb) and platinum (Pt) have been innovatively selected to construct an alloy catalyst. By employing the solvent-thermal method, PtPb nanoparticles with a well-defined crystalline structure were successfully synthesized, exhibiting excellent performance.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD), a global health challenge, is closely linked to renal fibrosis progression. Copper, an essential trace element, influences cellular functions, yet its role in CKD-related fibrosis remains unclear. This study explores the causal relationship between serum copper levels and renal fibrosis in CKD.

View Article and Find Full Text PDF