Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Precious metal nanomaterials have demonstrated significant advantages in the field of alcohol electro-catalytic oxidation. In this study, the inexpensive main group metals lead (Pb) and platinum (Pt) have been innovatively selected to construct an alloy catalyst. By employing the solvent-thermal method, PtPb nanoparticles with a well-defined crystalline structure were successfully synthesized, exhibiting excellent performance. The electrochemical test data revealed that the catalyst achieved mass activities of 15 550 mA mg in the ethylene glycol oxidation reaction and 5948 mA mg in the ethanol oxidation reaction, surpassing those of commercial Pt/C catalysts. Notably, this alloying strategy, based on main group metals, effectively addresses the performance limitations of the conventional transition metal doping system. Furthermore, it introduces a novel concept for material system construction, facilitating the design of cost-effective alcohol fuel cell catalysts. This approach is particularly valuable from a theoretical perspective, as it investigates the synergistic catalytic mechanism between main group metals and precious metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5nr02623g | DOI Listing |