98%
921
2 minutes
20
Protein synthesis is frequently dysregulated in cancer and selective inhibition of mRNA translation represents an attractive cancer therapy. Here, we show that therapeutically targeting the RNA helicase eIF4A with zotatifin, the first-in-class eIF4A inhibitor, exerts pleiotropic effects on both tumor cells and the tumor immune microenvironment in a diverse cohort of syngeneic triple-negative breast cancer (TNBC) mouse models. Zotatifin not only suppresses tumor cell proliferation but also directly repolarizes macrophages toward an M1-like phenotype and inhibits neutrophil infiltration, which sensitizes tumors to immune checkpoint blockade. Mechanistic studies revealed that zotatifin reprograms the tumor translational landscape, inhibits the translation of Sox4 and Fgfr1, and induces an interferon (IFN) response uniformly across models. The induction of an IFN response is partially due to the inhibition of Sox4 translation by zotatifin. A similar induction of IFN-stimulated genes was observed in breast cancer patient biopsies following zotatifin treatment. Surprisingly, zotatifin significantly synergizes with carboplatin to trigger DNA damage and an even heightened IFN response, resulting in T cell-dependent tumor suppression. These studies identified a vulnerability of eIF4A in TNBC, potential pharmacodynamic biomarkers for zotatifin, and provide a rationale for new combination regimens consisting of zotatifin and chemotherapy or immunotherapy as treatments for TNBC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721161 | PMC |
http://dx.doi.org/10.1172/JCI172503 | DOI Listing |
J Cell Mol Med
September 2025
College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.
View Article and Find Full Text PDFClin Breast Cancer
August 2025
Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, School of Pharmacy, Fujian Medical University, Fuzhou, China. Electronic address:
Background: Emerging evidence suggests that the gut microbiota (GM) may influence the progression of breast cancer by modulating immune responses. Given the vast diversity of GM and immune cell phenotypes, this study aimed to utilize the most advanced and comprehensive data to explore the causal relationships among the GM, immune cell phenotypes, and survival rates in hormone receptor-positive (HR+) breast cancer patients under different treatment regimens.
Methods: We investigated the causal relationships between the GM, immune cell phenotypes, and survival rates in HR+ breast cancer patients treated with 11 distinct therapeutic strategies using Mendelian randomization.
Acad Radiol
September 2025
Department of General Surgery, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey (A.N.Ş.).
Nihon Hoshasen Gijutsu Gakkai Zasshi
September 2025
Department of Radiological Technology, Faculty of Health Sciences, Gifu University of Medical Science.
Purpose: We aimed to develop an AI-based system to score the positioning in mammography (MG), with the goal of establishing a foundation for future technical support.
Methods: Using 800 mediolateral oblique (MLO) images, we developed an AI model (Mask Generation Model) for automatic extraction of three regions: the pectoralis major muscle, the mammary gland region, and the nipple. Using this model, we extracted three regions from 1544 MLO images and generated mask images.
Anal Chim Acta
November 2025
Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, PR China. Electronic address:
Background: Breast-conserving surgery (BCS) is the primary surgical approach for patients with breast cancer. The accurate determination of surgical margins during BCS is critical for patient prognosis; however, time constraints and limitations in current pathological techniques often prevent pathologists from performing this assessment intraoperatively. The inability to reliably assess margins during surgery can lead to incomplete tumor removal and the need for additional surgeries.
View Article and Find Full Text PDF