Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Materials that break multiple symmetries allow the formation of four-fermion condensates above the superconducting critical temperature (T). Such states can be stabilized by phase fluctuations. Recently, a fermionic quadrupling condensate that breaks the Z time-reversal symmetry was reported in BaKFeAs. A phase transition to the new state of matter should be accompanied by a specific heat anomaly at the critical temperature where Z time-reversal symmetry is broken ([Formula: see text]). Here, we report on detecting two anomalies in the specific heat of BaKFeAs at zero magnetic field. The anomaly at the higher temperature is accompanied by the appearance of a spontaneous Nernst effect, indicating the breakdown of Z symmetry. The second anomaly at the lower temperature coincides with the transition to a zero-resistance state, indicating the onset of superconductivity. Our data provide the first example of the appearance of a specific heat anomaly above the superconducting phase transition associated with the broken time-reversal symmetry due to the formation of the novel fermion order.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593811PMC
http://dx.doi.org/10.1038/s41467-023-42459-0DOI Listing

Publication Analysis

Top Keywords

time-reversal symmetry
12
specific heat
12
critical temperature
8
phase transition
8
heat anomaly
8
calorimetric evidence
4
phase
4
evidence phase
4
phase transitions
4
transitions bakfeas
4

Similar Publications

Dimensionality-Driven Anomalous Metallic State with Zero-Field Nonreciprocal Transport in Layered Ising Superconductors.

Phys Rev Lett

August 2025

Nanjing University, National Laboratory of Solid State Microstructures, Institute of Brain-Inspired Intelligence, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.

The anomalous metal state (AMS), observed in "failed" superconductors, provides insights into superconductivity and quantum criticality, with studies revealing unconventional quantum phases like the Bose metal. Recently, layered transition metal dichalcogenide (TMD) superconductors approaching the two-dimensional limit have garnered significant attention for the enhanced phase fluctuations and electronic correlations. Investigating AMSs in these systems, particularly in the absence of an external magnetic field, could offer valuable insights into the dimensionality-driven emergence of exotic quantum phenomena, including triplet Cooper pairing, phase fluctuation dynamics, and especially the recently discovered field-free superconducting diode effects.

View Article and Find Full Text PDF

The iron-based high-[Formula: see text] superconductors (SCs) exhibit rich phase diagrams with intertwined phases, including magnetism, nematicity, and superconductivity. The superconducting [Formula: see text] in many of these materials is maximized in the regime of strong nematic fluctuations, making the role of nematicity in influencing the superconductivity a topic of intense research. Here, we use the AC elastocaloric effect (ECE) to map out the phase diagram of Ba(FeCo)As near optimal doping.

View Article and Find Full Text PDF

Active-matter systems are inherently out-of-equilibrium and perform mechanical work by utilizing their internal energy sources. Breakdown of time-reversal symmetry (BTRS) is a hallmark of such dissipative nonequilibrium dynamics. We introduce a robust, experimentally accessible, noninvasive, quantitative measure of BTRS in terms of the Kullback-Leibler divergence in collision events, demonstrated in our novel artificial active matter, comprised of battery-powered spherical rolling robots whose energetics in different modes of motion can be measured with high precision.

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

The concept of parity-time symmetry has firmly established non-Hermiticity as a versatile degree of freedom on a variety of physical platforms. In general, the non-Hermitian dynamics of open systems are perceived to be inextricably linked to complex-valued potentials facilitating the local attenuation and coherent amplification in wave mechanics. Along these lines, time reversal symmetry is associated with a complex conjugation of the potential landscape, in essence swapping gain and loss.

View Article and Find Full Text PDF