98%
921
2 minutes
20
Organic semiconductor materials hold promising applications in photocatalytic hydrogen evolution due to their high modifiability and wide range of light absorption capability. In this study, we present an effective strategy for promoting the separation of photoexcited electrons from organic conjugated centers to active sites by modifying different nitrogen-containing groups on pyrene molecules. Building on this foundation, the well-designed catalyst Py-m-2N has demonstrated good performance by achieving a photocatalytic hydrogen evolution rate of 48.86 mmol g h, even in the absence of the precious metal platinum cocatalyst. This achievement places the pyrene-based photocatalyst ahead of the majority of its organic counterparts. Our comprehensive characterization and density functional theory calculations reveal that the nitrogen atom not only serves as an active site for hydrogen production but also plays a pivotal role in efficiently accumulating bulk-phase electrons. This electron enrichment process enhances the transport of photoexcited electrons from the light-absorbing pyrene units to the active nitrogen sites. This work provides inspiration for the future design of effective nitrogen-atom-modified organic semiconductor photocatalysts at the molecular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c07398 | DOI Listing |
Anal Chim Acta
November 2025
The Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE) - the Portuguese Research Centre for Sustainable Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal. Electronic address:
Background: When using semiconductor quantum dots (QDs) for single-analyte sensing, recognition is commonly achieved through interactions with capping ligands attached to the QDs surface. These ligands form an organic layer that provides stability in solution and assures selectivity by binding the target analyte via surface functional groups. However, a common analytical challenge arises in the subsequent stage of the QD-based sensing scheme.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:
Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Molecular spin systems that can be chemically tuned, coherently controlled, and readily integrated within devices remain central to the realization of emerging quantum technologies. Organic high-spin materials are prime candidates owing to their similarity in electronic structure to leading solid-state defect-based systems, light element composition, and the potential for entanglement and qubit operations mediated through spin-spin exchange. However, the inherent instability of these species precludes their rational design, development, and application.
View Article and Find Full Text PDFSci Adv
September 2025
National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Two-dimensional (2D) materials offer strong light-matter interaction and design flexibility beyond bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this limit. However, it is found challenging due to the competing charge transfer (CT) process and lack of resonance in exciton states.
View Article and Find Full Text PDF