Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Submergence is a major constraint on rice production in South and Southeast Asia. In this study, we determined that a gene of the Sub1A-binding protein family, SAB23, encodes a plant homeodomain (PHD)-type transcription factor that has a novel function of negatively regulating submergence tolerance in rice. The T-DNA insertion mutant sab23 displayed reduced plant height, delayed seed maturation, and lower percentage seed set. Importantly, this mutant also exhibited enhanced submergence tolerance. In addition, CRISPR/Cas9 knock out of SAB23 resulted in a significant reduction in the content of the gibberellin GA4 and a dramatic increase in the content of GA1 in the plants. SAB23 binds to the promoter of CYTOCHROME P450 714B2 (CYP714B2), which encodes a GA13-oxidase that catalyses the conversion of GA53 to GA19. Disruption of SAB23 function led to increased CYP714B2 transcription, and overexpression of CYP714B2 produced phenotypes similar to those of the SAB23-knockout plants. Taken together, our results reveal that SAB23 negatively regulates rice submergence tolerance by modulating CYP714B2 expression, which has significant potential for use in future breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erad388DOI Listing

Publication Analysis

Top Keywords

submergence tolerance
16
phd-type transcription
8
transcription factor
8
tolerance rice
8
rice submergence
8
sab23
7
submergence
5
mutation gene
4
gene encoding
4
encoding phd-type
4

Similar Publications

Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.

View Article and Find Full Text PDF

Flooding significantly threatens global agricultural productivity, especially under the pressures of climate change. To address this urgent environmental challenge, the development of flooding-tolerant crops is imperative. However, our understanding of the molecular mechanisms underlying flooding tolerance in plants, particularly in crops, remains limited.

View Article and Find Full Text PDF

ARR1/12-ETP1/2 model negatively regulates submergence-induced hypoxia response in A. thaliana.

J Plant Physiol

August 2025

Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, S

Submergence-induced hypoxia stress hampers plant growth and yield, yet its molecular mechanisms remain elusive. Here, we found that ETP1/2 are repressed by submergence stress and negatively regulate plant tolerance to submergence. Further analysis showed that the repression of ETP1/2 during the submergence response is at least partly caused by the decreased expression of ARR1/12, as ARR1/12 can directly bind to the promoters via the AGATTTG motifs to activate ETP1/2 expression.

View Article and Find Full Text PDF

Background: Submergence stress is a major obstacle limiting the application of direct seeding in rice cultivation. Therefore, understanding the genetic basis of submergence tolerance in rice is of great significance for identifying favorable genes and developing superior rice varieties. However, few studies have focused on submergence tolerance during seed germination; thus, the genetic basis of submergence tolerance at this stage deserves more attention.

View Article and Find Full Text PDF