Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lymphatic transport facilitates the presentation of cancer antigens in tumor-draining lymph nodes (tdLNs), leading to T cell activation and the generation of systemic antitumor immune surveillance. Surgical removal of LNs to control cancer progression is routine in clinical practice. However, whether removing tdLNs impairs immune checkpoint blockade (ICB) is still controversial. Our analysis demonstrates that melanoma patients remain responsive to PD-1 checkpoint blockade after LN dissection. We were able to recapitulate the persistent response to ICB after complete LN resection in murine melanoma and mammary carcinoma models. Mechanistically, soluble antigen and antigen-carrying migratory dendritic cells are diverted to non-directly tumor draining LNs (non-tdLNs) after tdLN dissection. Consistently, robust ICB responses in patients with head and neck cancer after primary tumor and tdLN resection correlated with the presence of reactive LNs in distant areas. These findings indicate that non-tdLNs sufficiently compensate for the removal of direct tdLNs and sustain the response to ICB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541098PMC
http://dx.doi.org/10.1101/2023.09.19.558262DOI Listing

Publication Analysis

Top Keywords

checkpoint blockade
8
response icb
8
cancer
4
cancer immunotherapy
4
immunotherapy response
4
response persists
4
persists lymph
4
lymph node
4
node resection
4
resection lymphatic
4

Similar Publications

Background: The cluster of differentiation 47 (CD47)-signal regulatory protein alpha (SIRPα) axis is a key regulator of innate immune surveillance, facilitating the neoplastic evasion of macrophage-mediated phagocytosis. Although this pathway has been implicated in tumor immune escape in multiple malignancies, its clinical and prognostic significance in esophageal squamous cell carcinoma (ESCC) remain to be fully elucidated.

Methods: We retrospectively analyzed 100 patients who underwent esophagectomy for resectable ESCC.

View Article and Find Full Text PDF

Modulation of fibronectin extracellular matrix enhances anti-tumor efficacy of immune checkpoint blockade.

Cell Rep Med

September 2025

Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. Electronic address:

The success of immune checkpoint inhibitors is limited by multiple factors, including poor T cell infiltration and function within tumors, partly due to a dense extracellular matrix (ECM). Here, we investigate modulating the ECM by targeting integrin α5β1, a major fibronectin-binding and organizing integrin, to improve immunotherapy outcomes. Use of a function-blocking murinized α5β1 antibody reduces fibronectin fibril formation, enhances CD8 T cell transendothelial migration, increases vascular permeability, and decreases vessel-associated collagen.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) is standard of care in advanced diffuse pleural mesothelioma (DPM), but its role in the perioperative management of DPM is unclear. In tandem, circulating tumor DNA (ctDNA) ultra-sensitive residual disease detection has shown promise in providing a molecular readout of ICB efficacy across resectable cancers. This phase 2 trial investigated neoadjuvant nivolumab and nivolumab/ipilimumab in resectable DPM along with tumor-informed liquid biopsy residual disease assessments.

View Article and Find Full Text PDF

Activation of PD-1/PD-L1 immune checkpoint by Zika virus.

PLoS Pathog

September 2025

School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.

Zika virus (ZIKV) has emerged as a rising concern in global health in recent years. The role of PD-1/PD-L1 immune checkpoint in acute ZIKV infection remains to be understood. In this study we demonstrated the activation of PD-1/PD-L1 immune checkpoint by ZIKV.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is defined by a myeloid-enriched microenvironment and has shown remarkable resistance to immune checkpoint blockade (e.g., PD-1 and CTLA-4).

View Article and Find Full Text PDF