Accuracy and stability enhanced honey authenticity visual tracing method via false positive-eradicating PCR assisted nucleic acid-capturing lateral flow strip.

Food Chem

Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China. Electronic address:

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Honey authenticity guarantee is crucial for consumer health and fair-trading commerce. New visual false-positive-free molecular lateral flow strip (LFS), termed 5'-3' exonuclease activity -directed false positive-eradicating PCR assisted lateral flow strip (FPE-PCR-LFS) was developed. This FPE-PCR-LFS explored the availability of using a signal-probe as the mediator to integrate the efficient amplification module with visual LFS module. With the genomic DNA extracted from target honey, the designed signal probe would be hydrolyzed and exhausted by the 5'-3' exonuclease activity of Taq DNA polymerase in the amplification process. The hydrolyzed signal probe would not be recognized and capture on the T line with only C line of LFS, reflecting the authenticity of the tested honey. And as low as 0.5% authenticity can be accurately identified in commercial honey samples. Significantly, the false-positive-interference was successfully eradicated for the final visual results judgement, which would greatly widen the application of molecular PCR-LFS in various fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.137587DOI Listing

Publication Analysis

Top Keywords

lateral flow
12
flow strip
12
honey authenticity
8
false positive-eradicating
8
positive-eradicating pcr
8
pcr assisted
8
5'-3' exonuclease
8
exonuclease activity
8
signal probe
8
honey
5

Similar Publications

A series of molecular logic gates with multiple biocomputing capabilities have been successfully fabricated by using four antibiotic residues [tetracycline (TET), chloramphenicol (CHL), kanamycin (KAN), and streptomycin (STR)] as inputs. The lateral flow strip biosensor was utilized to realize the visual and portable sensing of logic events. Four basic logic gates (OR, AND, XOR, and INHIBIT) and three cascade logic circuits (OR-INHIBIT-AND, 3AND-OR, and XOR-INHIBIT-OR-AND) were constructed.

View Article and Find Full Text PDF

Mycoplasma pneumonia, a primary aetiological agent of atypical pneumonia, necessitates the implementation of rapid point-of-care diagnostics. Lateral flow immunoassays (LFIAs) hold promise for point-of-care testing (POCT), yet their sensitivity levels are frequently constrained by probe affinity and matrix interference. We introduce an orientational labelling strategy that employs magnetic nanoparticles (MNPs) functionalized with staphylococcal protein A (SPA) to simultaneously enhance antibody orientation and facilitate magnetic enrichment.

View Article and Find Full Text PDF

Spillover of SARS-CoV-2 to Domestic Dogs in COVID-19-Positive Households: A One Health Surveillance Study.

Virus Res

September 2025

Pennsylvania Department of Agriculture, Pennsylvania Veterinary Laboratory, Harrisburg, PA 17110, USA. Electronic address:

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is capable of infecting multiple species through human-to-animal spillover. Human to animal spillovers have been documented both in domestic and wild animal species. Due to close contact in shared households, pet dogs may be at increased risk for contracting the SARS-CoV-2 virus from infected individuals in the same household.

View Article and Find Full Text PDF

Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) are important pathogens that are closely associated with hospital-acquired and community-acquired infections.

View Article and Find Full Text PDF

A Versatile DNAzyme-Amplified Protease-Sensing Platform for Accurate Diagnosis of SARS-CoV-2 and Reliable Classification of Colorectal Cancer.

Angew Chem Int Ed Engl

September 2025

College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P.R. China.

Peptide-based biosensors are widely used for in vitro detection of protease activity but often suffer from the limited sensitivity, poor accuracy, and incompatibility with point-of-care testing (POCT) devices. Herein, we developed a versatile deoxyribozyme (DNAzyme)-amplified protease-sensing (DP) platform that integrates the positively charged oligopeptides with a negatively charged DNAzyme biocatalyst for highly-sensitive protease detection. The system leverages the electrostatic peptide-DNAzyme interactions to inhibit DNAzyme catalytic activity, which is reactivated upon the protease-triggered peptide hydrolysis, thus enabling an efficient signal amplification via the successive cleavage of DNAzyme substrate.

View Article and Find Full Text PDF