98%
921
2 minutes
20
Widespread interest has been generated by aqueous zinc batteries (AZIBs), which have excellent theoretical capacities (820 mA h g), a low redox potential (-0.76 V vs SHE of Zn metal), and high security. Suitable cathodes for constructing high performance AZIBs are of great signification. Metal-organic frameworks (MOFs) with adjustable structure via metals and organic units show great potential in AZIBs. In this work, ZnMn-Squaric acid (ZnMn-SQ) was synthesized using squaric acid through coprecipitation and served as the cathode for AZIBs. The ZnMn-SQ electrode demonstrated a high capacity of 489.1 mA h g at 0.2 A g. Meanwhile, ZnMn-SQ can obtain 80.7 mA h g after 1300 cycles, showing an outstanding long cycle life. More importantly, ex situ characterizations of XRD, XPS, and FT-IR revealed that ZnMn-SQ undergoes a structural transformation from the initial ZnMn-SQ framework to manganese oxide accompanied by Zn-SQ and then reduced to MnOOH, ZnMnO, and ZnSO(OH)·5HO (ZHS) in subsequent cycles. In addition, a modified zinc anode using cubic porous Zn-SQ-3d was used to construct ZnMn-SQ // Zn-SQ-3d@Zn(Zn-SQ-3d-coated Zn) high performance AZIBs, the capacity of which reaches 171.3 mA h g at 1 A g after 660 cycles. This work provided chances for constructing high-performance zinc ion batteries using MOF compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c10552 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Tencent Quantum Laboratory;
Electrolytes are important components in lithium-ion batteries. However, battery degradation due to irreversible electrochemical reactions in the electrolyte can consume electrolyte molecules and severely reduce its effective operation lifetime. It is hence important to study the electrochemical reaction pathways in the battery electrolyte to further improve lithium-ion battery reliability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.
View Article and Find Full Text PDFChemSusChem
September 2025
Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Organic battery electrode materials represent a sustainable alternative compared to most inorganic electrodes, yet challenges persist regarding their energy density and cycling stability. In this work, a new organic electrode material is described, which is obtained via ionothermal polymerization of low-cost starting materials, melem (2,5,8-triamino-tri-s-triazine) and perylenetetracarboxylic dianhydride (PTCDA). The resulting networked polymer Melem-PDI exhibits favorable thermal and electrochemical properties, prompting investigation into its performance as a positive electrode material in rechargeable lithium and magnesium batteries.
View Article and Find Full Text PDFACS Omega
September 2025
College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, Jiangsu, China.
State of charge (SOC) is extremely critical to the reliability of lithium-ion (Li-ion) battery utilization. In this study, a novel problem in which internal differences occurred in the battery package, causing uncertain SOC initialization of each battery unit, is solved by combining the variational theorem and the extended Kalman filter (EKF) algorithm. First, the importance of the initialized SOC setting of each unit in the battery package is proposed by determining the theoretical relationship between the initialization value and the current estimation result.
View Article and Find Full Text PDF