Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: head blight (FHB) is a disease affecting wheat spikes caused by some species and leads to cases of severe yield reduction and seed contamination. Identifying resistance genes/QTLs from wheat germplasm may help to improve FHB resistance in wheat production.

Methods: Our study evaluated 205 elite winter wheat cultivars for FHB resistance. A high-density 90K SNP array was used for genotyping the panel. A genome-wide association study (GWAS) from cultivars from three different environments was performed using a mixed linear model (MLM).

Results: Sixty-six significant marker-trait associations (MTAs) were identified ( < 0.001) on fifteen chromosomes that explained the phenotypic variation ranging from 5.4 to 11.2%. Some important new MTAs in genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 6A, and 7B. Six MTAs at 92 cM on chromosome 7B were found in cultivars from two different environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate and diseased rachis rate as pleiotropic effect loci and on chromosome 5D was novel for FHB resistance. Eight new candidate genes of FHB resistance were predicated in wheat in this study. Three candidate genes, , , and on chromosome 5DS, 6AS, and 7BL, respectively, were perhaps important in defending against FHB by regulating intramolecular transferase activity, GTP binding, or chitinase activity in wheat, but further validation in needed. In addition, a total of five favorable alleles associated with wheat FHB resistance were discovered. These results provide important genes/loci for enhancing FHB resistance in wheat breeding by marker-assisted selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518165PMC
http://dx.doi.org/10.7717/peerj.15906DOI Listing

Publication Analysis

Top Keywords

genome-wide association
8
head blight
8
fhb resistance
8
wheat
5
association analysis
4
analysis type
4
resistance
4
type resistance
4
resistance fusarium
4
fusarium head
4

Similar Publications

Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.

View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

Background: Comorbidities and genetic correlations between gastrointestinal tract diseases and psychiatric disorders have been widely reported, but the underlying intrinsic link between Alzheimer's disease (AD) and inflammatory bowel disease (IBD) is not adequately understood.

Methods: To identify pathogenic cell types of AD and IBD and explore their shared genetic architecture, we developed Pathogenic Cell types and shared Genetic Loci (PCGL) framework, which studied AD and IBD and its two subtypes of ulcerative colitis (UC) and Crohn's disease (CD).

Results: We found that monocytes and CD8 T cells were the enriched pathogenic cell types of AD and IBDs, respectively.

View Article and Find Full Text PDF

RELA Ablation Contributes to Progression of Hepatocellular Carcinoma with TP53 Mutation and is a Potential Therapeutic Target.

Adv Sci (Weinh)

September 2025

China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea

TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.

View Article and Find Full Text PDF

Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.

Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.

View Article and Find Full Text PDF