98%
921
2 minutes
20
The high frequency, stable somatic embryo system of tea has still not been established due to the limitations of its own characteristics and therefore severely restricts the genetic research and breeding process of tea plants. In this study, the transcriptome was used to illustrate the mechanisms of gene expression regulation in the somatic embryogenesis of tea plants. The number of DEGs for the (IS intermediate stage)_PS (preliminary stage), ES (embryoid stage)_IS and ES_PS stages were 109, 2848 and 1697, respectively. The enrichment analysis showed that carbohydrate metabolic processes were considerably enriched at the ES_IS stage and performed a key role in somatic embryogenesis, while enhanced light capture in photosystem I could provide the material basis for carbohydrates. The pathway analysis showed that the enriched pathways in IS_PS process were far less than those in ES_IS or ES_PS, and the photosynthesis and photosynthetic antenna protein pathway of DEGs in ES_IS or ES_PS stage were notably enriched and up-regulated. The key photosynthesis and photosynthesis antenna protein pathways and the Lhcb1 gene were discovered in tea plants somatic embryogenesis. These results were of great significance to clarify the mechanism of somatic embryogenesis and the breeding research of tea plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518320 | PMC |
http://dx.doi.org/10.1038/s41598-023-43355-9 | DOI Listing |
Tree Physiol
September 2025
Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.
View Article and Find Full Text PDFReprod Domest Anim
September 2025
National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.
View Article and Find Full Text PDFHidden within host cells, the endosymbiont is the most prevalent bacterial infection in the animal kingdom. Scientific breakthroughs over the past century yielded fundamental mechanisms by which controls arthropod reproduction to shape dynamic ecological and evolutionary trajectories. However, the structure and spatial organization of symbiont machineries that underpin intracellular colonization and orchestrate maternal inheritance remain unknown.
View Article and Find Full Text PDFUnlabelled: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant myopathy caused by aberrant expression of the retrogene, and it affects skeletal muscles primarily in the face, shoulder, and limbs. In healthy individuals, is expressed in early development and is subsequently silenced in most somatic tissues. The spatiotemporal pattern of DUX4 mis-expression beyond the cleavage stage in FSHD is poorly understood because is not well conserved beyond primates.
View Article and Find Full Text PDFCurr Opin Plant Biol
September 2025
State Key Laboratory of Gene Function and Modulation Research, Beijing Advanced Center of RNA Biology (BEACON), School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China. Electronic address:
Plants exhibit remarkable regenerative capacities, enabling tissue repair, de novo organogenesis, and somatic embryogenesis in response to mechanical injury or phytohormone induction. At the cellular level, this process is driven by the establishment of pluripotency and cell fate specification, regulated through dynamic epigenomic remodeling. Emerging studies have begun to unravel the intricate regulatory circuits governing regeneration in a cell-type- and lineage-specific manner.
View Article and Find Full Text PDF