Publications by authors named "Sujit Pujhari"

Hidden within host cells, the endosymbiont is the most prevalent bacterial infection in the animal kingdom. Scientific breakthroughs over the past century yielded fundamental mechanisms by which controls arthropod reproduction to shape dynamic ecological and evolutionary trajectories. However, the structure and spatial organization of symbiont machineries that underpin intracellular colonization and orchestrate maternal inheritance remain unknown.

View Article and Find Full Text PDF

Macroautophagy/autophagy is a critical modulator of pathogen invasion response in vertebrates and invertebrates. However, how it affects mosquito-borne viral pathogens that significantly burden public health remains relatively underexplored. To address this gap, we use a genetic approach to activate autophagy in the yellow fever mosquito () infected with a recombinant Sindbis virus (SINV) expressing an autophagy activator.

View Article and Find Full Text PDF

Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health.

View Article and Find Full Text PDF

Enhanced host immunity and competition for metabolic resources are two main competing hypotheses for the mechanism of -mediated pathogen inhibition in arthropods. Using an mosquito - somatic infection - O'nyong nyong virus (ONNV) model, we demonstrate that the mechanism underpinning -mediated virus inhibition is up-regulation of the Toll innate immune pathway. However, the viral inhibitory properties of were abolished by cholesterol supplementation.

View Article and Find Full Text PDF

Autophagy is a critical modulator of pathogen invasion response in vertebrates and invertebrates. However, how it affects mosquito-borne viral pathogens that significantly burden public health remains underexplored. To address this gap, we use a genetic approach to activate macroautophagy/autophagy in the yellow fever mosquito (), infected with a recombinant Sindbis virus (SINV) expressing an autophagy activator.

View Article and Find Full Text PDF

(=) has promise as a tool to suppress virus transmission by mosquitoes. However, can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of on diverse pathogens could have important implications for public health.

View Article and Find Full Text PDF

Globalization and climate change have contributed to the simultaneous increase and spread of arboviral diseases. Cocirculation of several arboviruses in the same geographic region provides an impetus to study the impacts of multiple concurrent infections within an individual vector mosquito. Here, we describe coinfection and superinfection with the Mayaro virus (Togaviridae, ) and Zika virus (Flaviviridae, ) in vertebrate and mosquito cells, as well as Aedes aegypti adult mosquitoes, to understand the interaction dynamics of these pathogens and effects on viral infection, dissemination, and transmission.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate gene expression during important biological processes including development and pathogen defense in most living organisms. Presently, no miRNAs have been identified in the mosquito Culex tarsalis (Diptera: Culicidae), one of the most important vectors of West Nile virus (WNV) in North America. We used small RNA sequencing data and in vitro and in vivo experiments to identify and validate a repertoire of miRNAs in Cx.

View Article and Find Full Text PDF

Mayaro virus (MAYV) is an emerging New World alphavirus (genus , family ) that causes acute multiphasic febrile illness, skin rash, polyarthritis and occasional severe clinical phenotypes. The virus lifecycle alternates between invertebrate and vertebrate hosts. Here we characterize the replication features, cell entry, lifecycle and virus-related cell pathology of MAYV using vertebrate and invertebrate models.

View Article and Find Full Text PDF

Mosquito bites transmit a number of pathogens via salivary droplets deposited during blood-feeding, resulting in potentially fatal diseases. Little is known about the genomic content of these nanodroplets, including the transmission dynamics of live pathogens. Here we introduce Vectorchip, a low-cost, scalable microfluidic platform enabling high-throughput molecular interrogation of individual mosquito bites.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human respiratory viral infection that has rapidly progressed into a pandemic, causing significant morbidity and mortality. Blood clotting disorders and acute respiratory failure have surfaced as the major complications among the severe cases of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection. Remarkably, more than 70% of deaths related to COVID-19 are attributed to clotting-associated complications such as pulmonary embolism, strokes and multi-organ failure.

View Article and Find Full Text PDF

Lack of an appropriate animal model to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent responsible for COVID-19 pandemic disease, represents a significant hurdle in the process of understanding disease biology and evaluating therapeutic and preventive candidates. It is time for public health agencies to revisit regulation on transplantation of human pluripotent stem cells for the possibility of the development of a humanized mice model with a humanized lung.

View Article and Find Full Text PDF

Background: Recent studies demonstrate that insect-specific viruses can influence the ability of their mosquito hosts to become infected with and transmit arboviruses of medical and veterinary importance. The aim of this study was to evaluate the interactions between Anopheles gambiae densovirus (AgDNV) (Parvoviridae) (a benign insect-specific virus that infects An. gambiae mosquitoes) and Mayaro virus (MAYV) (Togaviridae) (an emerging human pathogen that can be transmitted by An.

View Article and Find Full Text PDF

Innovative tools are essential for advancing malaria control and depend on an understanding of molecular mechanisms governing transmission of malaria parasites by mosquitoes. CRISPR/Cas9-based gene disruption is a powerful method to uncover underlying biology of vector-pathogen interactions and can itself form the basis of mosquito control strategies. However, embryo injection methods used to genetically manipulate mosquitoes (especially ) are difficult and inefficient, particularly for non-specialist laboratories.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a historically neglected mosquito-borne flavivirus that has caused recent epidemics in the western hemisphere. ZIKV has been associated with severe symptoms including infant microcephaly and Guillain-Barré syndrome, stimulating interest in understanding factors governing ZIKV infection. Heat shock protein 70 (Hsp70) has been shown to be an infection factor for multiple viruses, leading us to investigate the role of Hsp70 in the ZIKV infection process.

View Article and Find Full Text PDF

The Togavirus (Alphavirus) Mayaro virus (MAYV) was initially described in 1954 from Mayaro County (Trinidad) and has been responsible for outbreaks in South America and the Caribbean. Imported MAYV cases are on the rise, leading to invasion concerns similar to Chikungunya and Zika viruses. Little is known about the range of mosquito species that are competent MAYV vectors.

View Article and Find Full Text PDF

Cas9-mediated gene editing is a powerful tool for addressing research questions in arthropods. Current approaches rely upon delivering Cas9 ribonucleoprotein (RNP) complex by embryonic microinjection, which is challenging, is limited to a small number of species, and is inefficient even in optimized taxa. Here we develop a technology termed Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) to deliver Cas9 RNP to the arthropod germline by injection into adult female mosquitoes.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a vector-borne flavivirus that has caused recent outbreaks associated with serious disease in infants and newborns in the Americas. mosquitoes are the primary vectors for ZIKV, but little is known about the diversity of mosquitoes that can transmit ZIKV in North America. We chose three abundant North American mosquito species (, , and ) and one known vector species (), fed them blood meals supplemented with a recent outbreak ZIKV strain, and tested bodies, legs, and saliva for infectious ZIKV.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses for the swine industry worldwide. The PRRSV E protein, encoded by ORF 2b, is one of the non-glycosylated minor structural proteins. In this study, we present evidence for the interaction of the E protein with mitochondrial proteins ATP5A (part of ATP synthase complex), prohibitin, and ADP/ATP translocase.

View Article and Find Full Text PDF

Adenoviral vectors are now being explored as vaccine carriers to prevent infectious diseases in humans and animals. There are two strategies aimed at the expression of a vaccine antigen by adenoviral vectors. The first includes an insertion of the foreign gene expression cassette into the E1 region.

View Article and Find Full Text PDF

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a positive sense, single-stranded RNA genome virus that has become a major infection in swine, exerting huge economic losses to the industry worldwide. Detailed knowledge concerning the molecular mechanisms by which the virus manipulates the host cell signals transduction machinery is not only critical to further our understanding of viral replication and pathogenesis, but also guides our efforts to design new and improved therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)-dependent Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) are major host cell signalling pathways that regulate protein synthesis, cell growth, proliferation, migration and survival.

View Article and Find Full Text PDF

Introduction: Dengue is one of the most important arboviral infections caused by one of the four dengue serotypes, 1-4.

Objective: To study the applicability of different diagnostic methods in diagnosis of dengue viral infection.

Materials And Methods: A total of 2101 blood samples were collected for confirmation of dengue viral infection.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious threat to the pork industry, and its pathogenesis needs further investigations. To study the role of two structural proteins of PRRSV in virus-host cells interactions, two stable cell lines (MARC-2a and MARC-N) expressing GP2 and N proteins, respectively, were established. We induced apoptosis in these cells by treating them with staurosporine and found a significant reduction in the number of apoptotic cells in MARC-2a as compared to MARC-N and MARC-145 cells.

View Article and Find Full Text PDF

The present study was intended to explore the dynamics of viral and host factors determining the outcome of Japanese encephalitis viral infection. 223 patients with acute encephalitic syndrome, 126 with febrile illness suspected of JE and 79 apparently healthy individuals as control were enrolled. Elevated levels of TNF-α and IL-6 in encephalitis patients and IFN-γ in febrile JE patients without encephalitis were observed.

View Article and Find Full Text PDF