Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Commonly used noninvasive serological indicators serve as a step before endoscope diagnosis and help identify the high-risk gastric cancer (GC) population. However, they are associated with high false positives and high false negatives. Alternative noninvasive approaches, such as cancer-related features in cell-free DNA (cfDNA) fragments, have been gradually identified and play essential roles in early cancer detection. The integrated analysis of multiple cfDNA features has enhanced detection sensitivity compared to individual features.

Objective: This study aimed to develop and validate an assay based on assessing genomic-scale methylation and fragmentation profiles of plasma cfDNA for early cancer detection, thereby facilitating the early diagnosis of GC. The primary objective is to evaluate the overall specificity and sensitivity of the assay in predicting GC within the entire cohort, and subsequently within each clinical stage of GC. The secondary objective involved investigating the specificity and sensitivity of the assay in combination with possible serological indicators.

Methods: This is an observational case-control study. Blood samples will be prospectively collected before gastroscopy from 180 patients with GC and 180 nonmalignant control subjects (healthy or with benign gastric diseases). Cases and controls will be randomly divided into a training and a testing data set at a ratio of 2:1. Plasma cfDNA will be isolated and extracted, followed by bisulfite-free low-depth whole methylome sequencing. A multidimensional model named Thorough Epigenetic Marker Integration Solution (THEMIS) will be constructed in the training data set. The model includes features such as the methylated fragment ratio, chromosomal aneuploidy of featured fragments, fragment size index, and fragment end motif. The performance of the model in distinguishing between patients with cancer and noncancer controls will then be evaluated in the testing data set. Furthermore, GC-related biomarkers, such as pepsinogen, gastrin-17, and Helicobacter pylori, will be measured for each patient, and their predictive accuracy will be assessed both independently and in combination with the THEMIS model.

Results: Recruitment began in November 2022 and will be ended in April 2024. As of August 2022,250 patients have been enrolled. The final data analysis is anticipated to be completed by September 2024.

Conclusions: This is the first registered case-control study designed to investigate a stacked ensemble model integrating several cfDNA features generated from a bisulfite-free whole methylome sequencing assay. These features include methylation patterns, fragmentation profiles, and chromosomal copy number changes, with the aim of identifying the GC population. This study will determine whether multidimensional analysis of cfDNA will prove to be an effective strategy for distinguishing patients with GC from nonmalignant individuals within the Chinese population. We anticipate the THEMIS model will complement the standard-of-care screening and aid in identifying high-risk patients for further diagnosis.

Trial Registration: ClinicalTrial.gov NCT05668910; https://www.clinicaltrials.gov/study/NCT05668910.

International Registered Report Identifier (irrid): DERR1-10.2196/48247.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551793PMC
http://dx.doi.org/10.2196/48247DOI Listing

Publication Analysis

Top Keywords

methylome sequencing
12
case-control study
12
data set
12
will
11
multidimensional analysis
8
cell-free dna
8
sequencing assay
8
gastric cancer
8
observational case-control
8
high false
8

Similar Publications

Patterns and Processes of Genomic Evolution Inferred From the Ten Smallest Vertebrate Genomes.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.

Pufferfish exhibit the smallest vertebrate genomes, making them ideal models for investigating evolutionary patterns and processes that affect genome size. While the Takifugu rubripes genome was fully sequenced two decades ago, key evolutionary drivers remain elusive. We sequenced 10 pufferfish genomes and generated 35 transcriptomes and 13 methylomes to understand genomic evolutionary mechanisms.

View Article and Find Full Text PDF

The genomes of 43 distinct lactococcal strains were reconstructed by a combination of long- and short-read sequencing, resolving the plasmid complement and methylome of these strains. The genomes comprised 43 chromosomes of approximately 2.5 Mb each and 269 plasmids ranging from 2 to 211 kb (at an average occurrence of 6 per strain).

View Article and Find Full Text PDF

Human opsin restoration by histone methylation using methyltransferase fusion protein SETD7-dCas9.

Mol Ther Nucleic Acids

September 2025

Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.

Epigenetic modulation enables precise gene regulation without altering DNA sequences. While histone acetylation has been widely utilized for gene activation, the therapeutic potential of histone methylation remains underexplored. In this study, we developed a new epigenetic activator by fusing the histone methyltransferase SETD7 to deactivated Cas9 (dCas9).

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

The spatial resolution of omics analyses is fundamental to understanding tissue biology. The capacity to spatially profile DNA methylation, which is a canonical epigenetic mark extensively implicated in transcriptional regulation, is lacking. Here we introduce a method for whole-genome spatial co-profiling of DNA methylation and the transcriptome of the same tissue section at near single-cell resolution.

View Article and Find Full Text PDF