Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell blocks may be hard to be totally automatically detected by the scanner (ADS), generating incomplete whole slide images (WSIs), with areas that are not scanned, leading to possible false negative diagnosis. The aim of this study is to test if inking the cell blocks helps increasing ADS. Test 1: 15 cell blocks were sectioned, one half inked black (1HB) and the other inked green (1HG). Each of the halves was individually processed to generate a WSI stained by the H&E. 1HBs and 1HGs had similar scanning time (median 59 s vs. 65 s, p = .126) and file sizes (median 382 Mb vs. 381 Mb, p = .567). The black ink interfered less in the observation (2.2% vs. 44.4%; p < .001) than in the green one. Test 2: 15 cell blocks were sectioned, one half inked black (2HB) and the other left unstained/null (2HN). Each of the halves was individually processed to generate three WSIs-one HE, one periodic-acid Schiff (PAS), and one immunostained by cytokeratin AE1&AE3 (CKAE1AE3). HE and PAS WSIs from both 2HN and 2HB groups were all totally ADS and had similar scanning times and file sizes. Concerning immunostaining with CKAE1AE3: ADS (46.7% vs. 93.3%; p = .014), median time for scanning (57 s vs. 83 s; p < .001) and file size (178 Mb vs. 338 Mb; p < .001) were reduced significantly in the 2HN group in comparison with the 2HB. Although increasing scanning time and file size, inking the cell blocks helps increasing ADS after immunostaining, improving the safety and efficiency of the digital pathology workflow.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dc.25224DOI Listing

Publication Analysis

Top Keywords

cell blocks
16
inking cell
8
blocks
4
blocks improves
4
improves scanner
4
scanner detection
4
detection diagnosis
4
diagnosis pathology
4
pathology cell
4
blocks hard
4

Similar Publications

Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.

View Article and Find Full Text PDF

Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice.

View Article and Find Full Text PDF

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult male and female mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. (S1P receptor 1) and (sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage.

View Article and Find Full Text PDF

E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.

View Article and Find Full Text PDF