98%
921
2 minutes
20
Rampant dendrite growth, electrode passivation and severe corrosion originate from the uncontrolled ions migration behavior of Zn , SO , and H , which are largely compromising the aqueous zinc ion batteries (AZIBs) performance. Exploring the ultimate strategy to eliminate all the Zn anode issues is challenging but urgent at present. Herein, a fluorinated separator interface (PVDF@GF) is constructed simply by grafting the polyvinylidene difluoride (PVDF) on the GF surface to realize high-performance AZIBs. Experimental and theoretical studies reveal that the strong interaction between C─F bonds in the PVDF and Zn ions enables evenly redistributed Zn ions concentration at the electrode interface and accelerates the Zn transportation kinetics, leading to homogeneous and fast Zn deposition. Furthermore, the electronegative separator interface can spontaneously repel the SO and anchor H ions to alleviate the passivation and corrosion. Accordingly, the Zn|Zn symmetric cell with PVDF@GF harvests a superior cycling stability of 500 h at 10 mAh cm , and the Zn|VOX full cell delivers 76.8% capacity retention after 1000 cycles at 2 A g . This work offers an all-round solution and provides new insights for the design of advanced separators with ionic sieve function toward stable and reversible Zn metal anode chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202305119 | DOI Listing |
Exp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFSmall
September 2025
School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea.
All-solid-state batteries (ASSBs), equipped with highly ion-conductive sulfide solid electrolytes and utilizing lithium plating/stripping as anode electrochemistry, suffer from 1) chemical vulnerability of the electrolytes with lithium and 2) physical growth of lithium to penetrate the electrolytes. By employing an ordered mesoporous graphitic carbon (OMGC) framework between a sulfide electrolyte layer and a copper current collector in ASSB, the concerns by are addressed 1) minimizing the chemically vulnerable interface (CVI) between electric conductor and solid electrolyte, and 2) allowing lithium ingrowth toward the porous structure via Coble creep, a diffusional deformation mechanism of lithium metal along the lithium-carbon interface. The void volume of the framework is fully filled with lithium metal, despite ionic pathways not being provided separately, even without additional lithiophiles, when an enough amount of lithium is allowed to be plated.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China. Electronic address:
Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:
Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:
Effective removal of ethylene (CH) during fruit and vegetables storage and transport remains a critical challenge for post-harvest preservation. Although S-scheme heterojunctions can improve charge separation and redox capacity for ethylene degradation, their efficiency is still restricted by limited carrier transfer and sluggish oxygen activation. Here, we rationally designed a novel 2D/2D SnNbO/BiMoO monolayer S-scheme heterojunction integrated with Pt co-catalyst to address these limitations.
View Article and Find Full Text PDF