98%
921
2 minutes
20
Nitric oxide synthase (NOS) was initially discovered to participate in the generation of nitric oxide as a defense mechanism against pathogenic infections. In recent years, it has been found that NOS plays a pivotal role in regulating apoptosis and inflammation in mammals. However, the mechanisms underlying NOS-mediated apoptosis in invertebrates remain largely unclear. In this study, we found that the Apostichopus japonicus NOS (AjNOS) expression levels were upregulated by 2.20-fold and 3.46-fold after being challenged with Vibrio splendidus at concentrations of 10 CFU mL and 10 CFU mL for 12 h compared to the control group, respectively. Under these conditions, the rates of coelomocytes apoptosis were increased from 14.7% to 32.7% and 45.4%, respectively. Treatment with NOS inhibitor (l-NAME) resulted in a reduction of coelomocytes apoptosis rates from 32.6% to 26.5% in V. splendidus (10 CFU mL) groups and from 42.3% to 33.3% in V. splendidus (10 CFU mL) groups, respectively. NOS has been reported to regulate apoptosis through IκBα phosphorylation. Simultaneously, exposure to V. splendidus in conjunction with l-NAME resulted in down-regulation of AjIκBα phosphorylation levels compared to the group infected solely with V. splendidus. Furthermore, immunofluorescence analysis revealed that treatment with l-NAME or interference of AjNOS using siRNA inhibited translocation of AjNF-κB/p65 (RelA) into the nucleus. Previous studies have shown that NF-κB can down-regulate expression levels of Bcl-2 family members, which is an important pathway for regulating apoptosis. In the present study, treatment with l-NAME was found to promote anti-apoptotic AjBcl-2 mRNA increase to 1.41-fold and protein expression increase to 1.86-fold at 12 h post V. splendidus challenge. However, these effects were suppressed by PMA (an NF-κB activator). Overall, our findings demonstrate that AjNOS regulates coelomocytes apoptosis induced by V. splendidus through activation of the AjNF-κB signaling pathway and down-regulation of AjBcl-2 in A. japonicus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2023.109027 | DOI Listing |
Fish Shellfish Immunol
October 2025
State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China. Electronic address:
In recent years, lncRNAs (long non-coding RNAs) as well as m6A (N6-methyladenosine) modification have been found to play important roles during pathogens infection induced innate immune response. However, the relationship between the lncRNAs and m6A modification remains unclear. Here, we show that the lncRNA (lnc-28509) from sea cucumber Apostichopus japonicus was significantly induced in response to Vibrio splendidus infection.
View Article and Find Full Text PDFEnviron Pollut
June 2025
Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China.
The pervasive occurrence of combined metal and antibiotic pollution (CMAP) in agricultural soils is increasingly being recognized as a novel threat to ecosystems. However, the toxicity variations of CMAP compared to single pollution and the mechanisms underlying these changes remain poorly understood. Herein in this study, the toxicities of copper (Cu)/erythromycin (ERY) and lead (Pb)/norfloxacin (NOR) to earthworms (Eisenia fetida) were investigated.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute,
Genes (Basel)
October 2024
School of Medicine, Foshan University, Foshan 528000, China.
Comp Biochem Physiol C Toxicol Pharmacol
November 2024
College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China. Electronic address:
Hexavalent chromium (Cr(VI)) is a common pollutant in the marine environment, which impairs immunity and causes reproductive and heredity disorders in organisms. To clarify the immunotoxic effects of Cr (VI) on the marine worm Urechis unicinctus, we analyzed tissue damage and immune dysfunction caused by Cr (VI) in this organism at histopathologic, zymologic, apoptotic and molecular levels. The results indicated that the bioaccumulation of Cr (VI) bioaccumulation levels in coelomocytes was significantly higher than in the intestines and muscles.
View Article and Find Full Text PDF