98%
921
2 minutes
20
SARS-CoV-2 variants have continuously emerged in the face of effective vaccines. Reduced neutralization against variants raises questions as to whether other antibody functions are similarly compromised, or if they might compensate for lost neutralization activity. Here, the breadth and potency of antibody recognition and effector function is surveyed following either infection or vaccination. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observe similar binding and functional breadth for healthy and immunologically vulnerable populations, but considerably greater functional antibody breadth and potency across variants associated with vaccination. In contrast, greater antibody functional activity targeting the endemic coronavirus OC43 is noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains associated with exposure history. This analysis of antibody functions suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as novel variants continue to evolve.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449910 | PMC |
http://dx.doi.org/10.1038/s41467-023-40960-0 | DOI Listing |
Arch Pharm Res
September 2025
College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
Atopic dermatitis (AD) is an inflammatory skin disease that produces a variety of inflammatory cytokines and chemokines. Chitinase-3-like protein 1 (CHI3L1, YKL-40) significantly contributes to AD-associated inflammatory response and is highly expressed in patients with AD. Therefore, this study elucidated the effects and potential mechanisms of human YKL-40 antibody on AD-affected skin.
View Article and Find Full Text PDFPLoS Pathog
September 2025
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
Zika virus (ZIKV) has emerged as a rising concern in global health in recent years. The role of PD-1/PD-L1 immune checkpoint in acute ZIKV infection remains to be understood. In this study we demonstrated the activation of PD-1/PD-L1 immune checkpoint by ZIKV.
View Article and Find Full Text PDFMol Carcinog
September 2025
Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
B cells located in tertiary lymphoid structures (TLSs) may undergo clonal expansion, somatic hypermutation, isotype switching, and tumor-specific antibody production, suggesting that antibody-producing plasma cells may be involved in antitumor immunity. This study used a combination of single-cell sequencing (five samples from our center, and four samples from PRJNA662018) and spatial transcriptome (one sample from our center, and four samples from GSE169379) research methods to investigate the relationship between TLSs and the immunoglobulin repertoire in muscle invasive bladder cancer (MIBC). 405 patients with MIBC from TCGA and 348 patients with metastatic urothelial carcinoma on PD-L1 inhibitor treatment from the IMvigor210 trial were included in this study.
View Article and Find Full Text PDFFront Immunol
September 2025
Immunocore Ltd., Abingdon, United Kingdom.
Background: The programmed cell death protein 1 (PDCD1 or PD-1) is a key regulatory immune checkpoint and a major target for therapeutic intervention. In oncology, antibodies blocking the PD-1 pathway are used to activate immune cells to promote anti tumour immunity while in immune-mediated inflammatory diseases, PD-1 agonist molecules have the potential to achieve immune suppression. NK cells are a specialised population of innate lymphocytes able to recognize a large range of distressed cells including damaged tissues in autoimmune and inflammatory conditions.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA.
Immunotherapy, including immune checkpoint blockade, CART cells and bispecific antibodies have resulted in dramatic improvements in outcomes for patients with hematological malignancies, demonstrating the unique potency of the immune system in targeting malignant cells. The development of cancer vaccines aims to evoke an activated effector cell population and a memory response to provide long term immune surveillance to protect from relapse. Developing a potent cancer vaccine relies on identifying appropriate antigen targets, enhancing antigen presentation, and overcoming the immune suppressive milieu of the micro-environment.
View Article and Find Full Text PDF