98%
921
2 minutes
20
A scalable straightforward synthesis of monofluoro- and difluoromethyl triflate CF SO OCH F (M ) and CF SO OCHF (M ) through electrochemical fluorination (ECF, Simons process) of methyl triflate M in anhydrous hydrogen fluoride at nickel anodes is presented. The ECF method is also feasible for the preparation of the deuterated analogues CF SO OCD F (M ) and CF SO OCDF (M ). Surprisingly, no H/D exchange occurs during ECF of CF SO OCD (M ); this provides further evidence for a NiF /NiF -mediated ECF mechanism. The ECF of selected partially fluorinated ethyl triflates is described, and electrochemical fluorination of CF SO OCH CF (E ) leads to the until now unknown chiral CF SO OCHFCF (E ). The analogous fluoromethyl and fluoroethyl nonaflates are also accessible by ECF. This study contains detailed spectroscopic, structural, and thermal data on (fluoro)methyl and fluoro(ethyl) triflates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202302701 | DOI Listing |
J Colloid Interface Sci
September 2025
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:
Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).
View Article and Find Full Text PDFJ Org Chem
September 2025
Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
A novel electrochemical/Fe dual-catalyzed perfluoroalkylation-thiolization of alkenes under mild conditions has been developed. This protocol utilizes commercially available reagents, cheap electrodes, and simple equipment. Diverse polyfunctionalized perfluoroalkyl-substituted derivatives were successfully obtained in a direct and efficient way with a broad substrate scope and excellent functional group tolerance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
Electrochemical CO reduction reaction (CORR) has emerged as a key negative-emission technology, yet its industrial adoption hinges on cathode catalysts that deliver high selectivity and production rates at low cost. Herein, we reported a facile hydrothermal route to synthesize different scales of ZnOHF ultrathin nanowires with hybridized ZnO/ZnOHF heterointerfaces, where the 40 nm variant (NW-ZnOHF) showed a high FE of 93 % and a of -17.2 mA/cm at -1.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of
High-voltage lithium metal batteries (LMBs) have emerged as ideal candidates for achieving high-energy-density energy storage devices. Notably, high-reactive lithium metal and high-voltage transition metal oxide cathodes require electrolytes with superior electrochemical stability and interfacial compatibility. Herein, a solvent chemistry electrolyte design strategy is proposed that a weakly-solvated fluorinated bis(2,2,2-trifluoroethyl) carbonate (TFEC) was introduced into carbonate electrolyte for enhanced high voltage performance.
View Article and Find Full Text PDFACS Nano
September 2025
Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, Québec J3X 1P7, Canada.
Owing to its chemical stability and molecular-level structural tunability, the molecular electrocatalyst cobalt phthalocyanine (CoPc) demonstrates significant potential for the electrochemical reduction of CO (CORR). However, the specific catalytic reaction process of CORR and the dynamic structural evolution mechanisms of CoPc remain a contentious subject. Elucidating the reaction pathways of CO electroreduction to CO and tracking structural evolution pose substantial challenges.
View Article and Find Full Text PDF