98%
921
2 minutes
20
The bottom-up assembly of biological components in synthetic biology has contributed to a better understanding of natural phenomena and the development of new technologies for practical applications. Over the past few decades, basic RNA research has unveiled the regulatory roles of RNAs underlying gene regulatory networks; while advances in RNA biology, in turn, have highlighted the potential of a wide variety of RNA elements as building blocks to construct artificial systems. In particular, synthetic mRNA-based translational regulators, which respond to signals in cells and regulate the production of encoded output proteins, are gaining attention with the recent rise of mRNA therapeutics. In this Review, we discuss recent progress in RNA synthetic biology, mainly focusing on emerging technologies for sensing intracellular protein and RNA molecules and controlling translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10431736 | PMC |
http://dx.doi.org/10.1080/15476286.2023.2244791 | DOI Listing |
Trends Immunol
September 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:
Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:
Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.
View Article and Find Full Text PDFMol Cells
September 2025
Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea. Electronic address:
Proper subcellular localization of Toll-like receptors (TLRs) is essential for initiating appropriate innate immune responses against pathogens while avoiding self-reactivity. UNC93B1 is known to mediate the intracellular trafficking of nucleotide-sensing TLRs such as TLR9 which undergoes rapid internalization into endolysosomes upon reaching the cell surface. We previously demonstrated that UNC93B1 also facilitates the plasma membrane localization of TLR5, a sensor for bacterial flagellin.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India. Electronic address:
The G protein-coupled receptors (GPCRs) represent one of the most pharmacologically targeted classes of seven-transmembrane (7TM) receptors, identified through whole genome sequencing of humans. GPCRs transduce extracellular stimuli and signals into intracellular responses, enabling precise cellular communication for physiology and homeostasis. Given their ability to sense a variety of ligands, GPCRs regulate a plethora of physiological functions, such as sensory perception, hormonal regulation and metabolism, growth and development, cardiovascular and reproductive regulation.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
Reported herein are long-lived, red-luminescent silver nanoclusters (AgNCs) protected by the small-molecule ligand thiolactic acid, which exhibit exceptional stability (shelf life exceeding three years, photostability ∼100%), water-solubility, and high biocompatibility, making them suitable for diverse applications such as sensing and live-cell imaging. The AgNCs display extremely sensitive (>2% K) temperature-dependent luminescence, monitored by a dual approach of changes in photoluminescence intensity and excited-state lifetime, enabling precise local thermal environment monitoring with a very high-resolution temperature sensing down to subdegree levels (<0.5 K).
View Article and Find Full Text PDF