98%
921
2 minutes
20
It is highly desirable to develop polydimethylsiloxane (PDMS) elastomers with high self-healing efficiency and excellent mechanical properties. However, most self-healable materials reported to date still take several hours to self-heal and improving the self-healing property often comes at the expense of mechanical properties. Herein, a simple design strategy of dual reversible network nanoarchitectonics is reported for constructing ultrafast light-controlled healable (40 s) and tough (≈7.2 MJ m) PDMS-based composite elastomers. The rupture reconstruction of dynamic bonds and the reinforcement effect of carbon nanotubes (10 wt %) endowed our composite elastomer with excellent fracture toughness that originated from a good yield strength (≈1.1 MPa) and stretchability (≈882%). Moreover, carbon nanotubes can quickly and directly heat the damaged area of the composite to achieve its ultrafast repair with the assistance of dynamic polymer/filler interfacial interaction, greatly shortening the self-healing time (12 h). The self-healing performance is superior to that of reported self-healable PDMS-based materials. This novel strategy and the as-prepared supramolecular elastomer can inspire further various practical applications, such as remote anti-icing/deicing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c08041 | DOI Listing |
Gen Physiol Biophys
September 2025
Department of Respiratory and Critical Care Medicine, Lishui Second People's Hospital, Lishui, China.
Circular RNA (circRNA) has been confirmed to be a regulator for septic acute kidney injury (AKI). It is reported that circ_0049271 has abnormal expression in AKI patients, but its role and mechanism in septic AKI remain unclear. Lipopolysaccharide (LPS)-stimulated HK-2 cells were served as the cellular model of sepsis-associated AKI (SAKI).
View Article and Find Full Text PDFThe present investigation elucidates the therapeutic potential of glycyrrhizin, the predominant triterpene saponin isolated from (licorice), in the management of systemic lupus erythematosus (SLE), an autoimmune disorder characterized by multisystemic involvement and therapeutic recalcitrance. Comprehensive interrogation of multiple disease-specific databases facilitated the identification of crucial SLE-associated molecular targets and hub genes, with MAPK1, MAPK3, TP53, JUN, and JAK2 demonstrating the highest degree of network centrality. Subsequent molecular docking simulations and binding affinity assessments revealed compounds with exceptional complementarity to these pivotal molecular targets, establishing as a pharmacologically promising botanical source and glycyrrhizin as its principal bioactive constituent meriting comprehensive mechanistic investigation.
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China.
Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.
Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro.
Medicine (Baltimore)
September 2025
Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
Gastrodin (GAS), the principal bioactive component derived from Gastrodia elata Bl., has demonstrated efficacy in attenuating methamphetamine (MA) induced conditioned place preference (CPP) in animal models. However, the molecular mechanisms underlying its anti-addictive effects, particularly the role of miRNAs, remain insufficiently understood.
View Article and Find Full Text PDFMicrosyst Nanoeng
September 2025
Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.
View Article and Find Full Text PDF