Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiologists have variable diagnostic performance and considerable interreader variability when interpreting MR enterography (MRE) examinations for suspected Crohn disease (CD). The purposes of this study were to develop a machine learning method for predicting ileal CD by use of radiomic features of ileal wall and mesenteric fat from noncontrast T2-weighted MRI and to compare the performance of the method with that of expert radiologists. This single-institution study included retrospectively identified patients who underwent MRE for suspected ileal CD from January 1, 2020, to January 31, 2021, and prospectively enrolled participants (patients with newly diagnosed ileal CD or healthy control participants) from December 2018 to October 2021. Using axial T2-weighted SSFSE images, a radiologist selected two slices showing greatest terminal ileal wall thickening. Four ROIs were segmented, and radiomic features were extracted from each ROI. After feature selection, support-vector machine models were trained to classify the presence of ileal CD. Three fellowship-trained pediatric abdominal radiologists independently classified the presence of ileal CD on SSFSE images. The reference standard was clinical diagnosis of ileal CD based on endoscopy and biopsy results. Radiomic-only, clinical-only, and radiomic-clinical ensemble models were trained and evaluated by nested cross-validation. The study included 135 participants (67 female, 68 male; mean age, 15.2 ± 3.2 years); 70 were diagnosed with ileal CD. The three radiologists had accuracies of 83.7% (113/135), 88.1% (119/135), and 86.7% (117/135) for diagnosing CD; consensus accuracy was 88.1%. Interradiologist agreement was substantial (κ = 0.78). The best-performing ROI was bowel core (AUC, 0.95; accuracy, 89.6%); other ROIs had worse performance (whole-bowel AUC, 0.86; fat-core AUC, 0.70; whole-fat AUC, 0.73). For the clinical-only model, AUC was 0.85 and accuracy was 80.0%. The ensemble model combining bowel-core radiomic and clinical models had AUC of 0.98 and accuracy of 93.5%. The bowel-core radiomic-only model had significantly greater accuracy than radiologist 1 ( = .009) and radiologist 2 ( = .02) but not radiologist 3 ( > .99) or the radiologists in consensus ( = .05). The ensemble model had greater accuracy than the radiologists in consensus ( = .02). A radiomic machine learning model predicted CD diagnosis with better performance than two of three expert radiologists. Model performance improved when radiomic data were ensembled with clinical data. Deployment of a radiomic-based model including T2-weighted MRI data could decrease interradiologist variability and increase diagnostic accuracy for pediatric CD.

Download full-text PDF

Source
http://dx.doi.org/10.2214/AJR.23.29812DOI Listing

Publication Analysis

Top Keywords

machine learning
12
t2-weighted mri
12
ileal
9
crohn disease
8
radiomic clinical
8
clinical data
8
radiomic features
8
ileal wall
8
expert radiologists
8
study included
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF