98%
921
2 minutes
20
Genomic data variability from laboratory reports can impact clinical decisions and population-level analyses; however, the extent of this variability and the impact on the data's value are not well characterized. This pilot study used anonymized genetic and genomic test reports from the Connect Myeloid Disease Registry (NCT01688011), a multicenter, prospective, observational cohort study of patients with newly diagnosed myelodysplastic syndromes, acute myeloid leukemia, or idiopathic cytopenia of undetermined significance, to analyze laboratory test variabilities and limitations. Results for 56 randomly selected patients enrolled in the Registry were independently extracted and evaluated (data cutoff, January 2020). Ninety-five reports describing 113 assay results from these 56 patients were analyzed for discrepancies. Almost all assay results [101 (89%)] identified the sequencing technology applied, and 94 (83%) described the test limitations; 95 (84%) described the limits of detection, but none described the limit of blank for detecting false positives. RNA transcript identifiers were not provided for 20 (43%) variants analyzed by next-generation sequencing and reported by the same laboratory. Of 42 variants with variant allele frequencies ≥30%, 16 (38%) of the variants did not have report text indicating that the variants might be germline. Variabilities and lack of standardization present challenges for incorporating this information into clinical care and render data collation ineffective and unreliable for large-scale use in centralized databases for therapeutic discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmoldx.2023.05.002 | DOI Listing |
Genome Biol
September 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.
Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.
Infect Dis Ther
September 2025
School of Biomedical Sciences, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
Introduction: The high mortality of Coronavirus Disease 2019 (COVID-19) highlights the need for safe and effective antiviral treatment. Small molecular antivirals (remdesivir, molnupiravir, nirmatrelvir/ritonavir) and immunomodulators (baricitinib, tocilizumab) have been developed or repurposed to suppress viral replication and ameliorate cytokine storms, respectively. Despite U.
View Article and Find Full Text PDFExp Appl Acarol
September 2025
Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali, 671000, China.
The family Spinturnicidae belongs to the suborder Monogynapsida, superfamily Dermanyssoidea, and exclusively parasitizes the body surface of bats. In the present study, we determined the complete mitochondrial genome of Spinturnix psi, a species of bat mite, and subsequently conducted a comprehensive analysis of its genomic information. The mitochondrial genome of S.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Institute for Breeding Research on Agricultural Crops, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Sanitz, 18190, Germany.
Low-cost and high-throughput RNA sequencing data for barley RILs achieved GP performance comparable to or better than traditional SNP array datasets when combined with parental whole-genome sequencing SNP data. The field of genomic selection (GS) is advancing rapidly on many fronts including the utilization of multi-omics datasets with the goal of increasing prediction ability and becoming an integral part of an increasing number of breeding programs ensuring future food security. In this study, we used RNA sequencing (RNA-Seq) data to perform genomic prediction (GP) on three related barley RIL populations.
View Article and Find Full Text PDFMamm Genome
September 2025
Department of Animal Health and Anatomy, Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Travessera Dels Turons, 08193, Cerdanyola del Vallès, Barcelona, Spain.
The mouse remains the principal animal model for investigating human diseases due, among other reasons, to its anatomical similarities to humans. Despite its widespread use, the assumption that mouse anatomy is a fully established field with standardized and universally accepted terminology is misleading. Many phenotypic anatomical annotations do not refer to the authority or origin of the terminology used, while others inappropriately adopt outdated or human-centric nomenclature.
View Article and Find Full Text PDF