Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To develop the wed-based system for predicting risk of (pre)frailty among community-dwelling older adults.

Materials And Methods: (Pre)frailty was determined by physical frailty phenotype scale. A total of 2802 robust older adults aged ≥60 years from the China Health and Retirement Longitudinal Study (CHARLS) 2013-2015 survey were randomly assigned to derivation or internal validation cohort at a ratio of 8:2. Logistic regression, Random Forest, Support Vector Machine and eXtreme Gradient Boosting (XGBoost) were used to construct (pre)frailty prediction models. The Grid search and 5-fold cross validation were combined to find the optimal parameters. All models were evaluated externally using the temporal validation method via the CHARLS 2011-2013 survey. The (pre)frailty predictive system was web-based and built upon representational state transfer application program interfaces.

Results: The incidence of (pre)frailty was 34.2 % in derivation cohort, 34.8 % in internal validation cohort, and 32.4 % in external validation cohort. The XGBoost model achieved better prediction performance in derivation and internal validation cohorts, and all models had similar performance in external validation cohort. For internal validation cohort, XGBoost model showed acceptable discrimination (AUC: 0.701, 95 % CI: [0.655-0.746]), calibration (p-value of Hosmer-Lemeshow test > 0.05; good agreement on calibration plot), overall performance (Brier score: 0.200), and clinical usefulness (decision curve analysis: more net benefit than default strategies within the threshold of 0.15-0.80). The top 3 of 14 important predictors generally available in community were age, waist circumference and cognitive function. We embedded XGBoost model into the server and this (pre)frailty predictive system is accessible at http://www.frailtyprediction.com.cn. A nomogram was also conducted to enhance the practical use.

Conclusions: A user-friendly web-based system was developed with good performance to assist healthcare providers to measure the probability of being (pre)frail among community-dwelling older adults in the next two years, facilitating the early identification of high-risk population of (pre)frailty. Further research is needed to validate this preliminary system across more controlled cohorts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2023.105138DOI Listing

Publication Analysis

Top Keywords

validation cohort
20
internal validation
16
community-dwelling older
12
older adults
12
xgboost model
12
prefrailty
8
prefrailty community-dwelling
8
derivation internal
8
validation
8
prefrailty predictive
8

Similar Publications

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Background: Severe acute pancreatitis (SAP) is a life-threatening condition requiring early risk stratification. While the Bedside Index for Severity in Acute Pancreatitis (BISAP) is widely used, its reliance on complex parameters limits its applicability in resource-constrained settings. This study introduces a decision tree model based on Classification and Regression Tree (CART) analysis, utilizing Neutrophil-to-Lymphocyte Ratio (NLR) and C-reactive Protein (CRP), as a simpler alternative for early SAP prediction.

View Article and Find Full Text PDF

Background: Stroke is a leading cause of death and disability globally, with frequent cognitive sequelae affecting up to 60% of stroke survivors. Despite the high prevalence of post-stroke cognitive impairment (PSCI), early detection remains underemphasized in clinical practice, with limited focus on broader neuropsychological and affective symptoms. Stroke elevates dementia risk and may act as a trigger for progressive neurodegenerative diseases.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF