Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study investigates the brain-targeted efficiency of atomoxetine (AXT)-loaded nanostructured lipid carrier (NLC)-laden thermosensitive in situ gel after intranasal administration. AXT-NLC was prepared by the melt emulsification ultrasonication method and optimized using the Box-Behnken design (BBD). The optimized formulation (AXT-NLC) exhibited particle size PDI, zeta potential, and entrapment efficiency (EE) of 108 nm, 0.271, -42.3 mV, and 84.12%, respectively. The morphology of AXT-NLC was found to be spherical, as confirmed by SEM analysis. DSC results displayed that the AXT was encapsulated within the NLC matrix. Further, optimized NLC (AXT-NLC13) was incorporated into a thermosensitive in situ gel using poloxamer 407 and carbopol gelling agent and evaluated for different parameters. The optimized in situ gel (AXT-NLC13G4) formulation showed excellent viscosity (2532 ± 18 Cps) at 37 °C and formed the gel at 28-34 °C. AXT-NLC13-G4 showed a sustained release of AXT (92.89 ± 3.98% in 12 h) compared to pure AXT (95.47 ± 2.76% in 4 h). The permeation flux through goat nasal mucosa of AXT from pure AXT and AXT-NLC13-G4 was 504.37 µg/cm·h and 232.41 µg/cm·h, respectively. AXT-NLC13-G4 intranasally displayed significantly higher absolute bioavailability of AXT (1.59-fold higher) than intravenous administration. AXT-NLC13-G4 intranasally showed 51.91% higher BTP than pure AXT (28.64%) when administered via the same route (intranasally). AXT-NLC13-G4 showed significantly higher BTE (207.92%) than pure AXT (140.14%) when administered intranasally, confirming that a high amount of the AXT reached the brain. With the disrupted performance induced by L-methionine, the AXT-NLC13-G4 showed significantly ( < 0.05) better activity than pure AXT as well as donepezil (standard). The finding concluded that NLC in situ gel is a novel carrier of AXT for improvement of brain delivery by the intranasal route and requires further investigation for more justification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386213PMC
http://dx.doi.org/10.3390/pharmaceutics15071985DOI Listing

Publication Analysis

Top Keywords

situ gel
20
pure axt
20
axt
11
nlc situ
8
thermosensitive situ
8
axt-nlc13-g4 intranasally
8
gel
6
axt-nlc13-g4
6
situ
5
pure
5

Similar Publications

Cathepsin K and glycosaminoglycans differentially regulate matrix metalloproteinase activity in dentin under various pH conditions.

Int J Biol Macromol

September 2025

Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China; Research Center of Dental Esthetics and B

This study examined the pH-dependent (3, 5, and 7) regulation of matrix metalloproteinase (MMP) activity by cathepsin K (catK) and glycosaminoglycans (GAGs) using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence assays, and human dentin slice experiments. The direct effects of catK were evaluated in the catK-active, catK-deficient, and odanacatib (ODN)-inhibited groups, whereas indirect GAG/ tissue inhibitor of metalloproteinase (TIMP)-mediated regulation was assessed in the catK-active, ODN-inhibited, and chondroitin sulfate (CS)-treated groups through dimethylmethylene blue (DMMB) assays, in situ zymography, and immunofluorescence staining. CatK directly activated MMP-2 (62 kDa) and MMP-9 (82 kDa) at all pH values, with no activation observed in the ODN-inhibited or catK-deficient groups.

View Article and Find Full Text PDF

CircTTC3 regulates the osteogenic differentiation of adipose-derived mesenchymal stem cells via miR-205/Smad3 axis.

Exp Cell Res

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City 610041, China. Electronic address:

Adipose-derived mesenchymal stem cells (ADSCs) hold great promise for bone tissue repair and regeneration. Circular RNAs (circRNAs) play a crucial role in regulating the osteogenic differentiation and bone remodeling of ADSCs; however, the underlying molecular mechanisms remain unclear. In this study, we conducted whole transcriptome sequencing (WTS) on ADSCs and constructed a competing endogenous RNA (ceRNA) regulatory network to identify the circTTC3/miR-205/mothers against decapentaplegic homolog 3 (Smad3) signaling axis.

View Article and Find Full Text PDF

In situ integrated design of composite SEI-gel electrolytes boosting high-safety and wide-temperature lithium metal batteries.

J Colloid Interface Sci

September 2025

Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China. Electronic address:

Neither single electrolyte design nor solid electrolyte interface (SEI) engineering alone can effectively resolve the dual challenges of sluggish reaction kinetics and unstable interfaces in polymer-based lithium metal batteries (LMBs). Herein, a rational integrated design strategy is adopted to simultaneously fabricate poly(trifluoroethyl methacrylate-co-4-oxo-5,8,11-trioxa-3-azatridec-12-en-1-yl acrylate)-based gel polymer electrolyte (PTDA-GPE) and stable composite SEI during the thermal-induced in situ polymerization process. The resulting PTDA-GPE demonstrates superior Li transport kinetics (1.

View Article and Find Full Text PDF

A Starch Gum with a Multi-Cascade Enzymatic Reaction Targeting Dental Caries Biofilm Eradication and Enamel Regeneration.

Adv Healthc Mater

September 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.

The progression of dental caries is exacerbated by the presence of bacterial biofilms on carious enamel surfaces, which inhibit remineralization and exacerbate caries. Existing caries treatment protocols are often complex and costly. To simultaneously eradicate caries-associated biofilms and repair demineralized enamel, this study develope a starch-based gum containing calcium carbonate nanoparticles loaded with L-arginine (CaCO@L-Arg) and glucose oxidase (GOx).

View Article and Find Full Text PDF

Nanofiber-interwoven gel membranes with tunable 3D-interconnected transport channels for efficient CO separation.

Nat Commun

September 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.

Mixed matrix membranes (MMMs) capable of breaking the permeability-selectivity trade-off suffer from the inefficient and disconnected bulky transport channels as well as inferior interfacial compatibility between nanomaterials and polymers. Herein, we propose an original photothermal-triggered in-situ gelation approach to elaborate an original class of MMMs, termed nanofiber-interwoven gel membranes (NIGMs) that feature tunable 3D-interconnected ultrafast transport channels and highly-selective CO-philic gel for boosting CO separation performance. The key design of NIGMs lies in leveraging dual functions of CNT-interwoven skeleton: (1) serving as a photothermal confined reactor that rapidly triggers in-situ gelation of highly-selective CO-philic gel without phase separation-induced interfacial defects to construct defect-free and thickness-controllable NIGMs; (2) functioning as a 3D-interconnected continuous skeleton for providing ultrafast CO transport channels.

View Article and Find Full Text PDF