98%
921
2 minutes
20
Background: Decellularized adipose-derived matrix (DAM), a biological scaffold that can induce adipose regeneration. The balance between its sterilization efficiency and its ability to maintain in situ adipose regeneration should be considered in terminal sterilization. The purpose of this study was to investigate the effects of radiation sterilization of cobalt-60 ( Co)with different doses on adipogenesis induced by different forms of DAM, so as to reduce radiation dose under the premise of safe and effective sterilization and ensure adipogenesis induced by DAM in vivo.
Methods: High dose (25 kGy) and low dose (5 kGy) radiation were used to sterilize freeze-dried and wet DAM, respectively. The sterilization efficiency, macro and micro characteristics, mechanical and mechanical properties of DAM were compared, and then implanted into the immunocompromised mice to evaluate the adipose regeneration.
Results: Under the two radiation doses, no microbial growth was found in the freeze-dried and wet DAM sterility tests, and no significant changes were observed in the macro and micro structures. In terms of mechanical properties, the elastic modulus of high dose freeze-dried DAM decreased significantly (p < 0.001). In vivo animal experiments, the freeze-dried DAM irradiated with high dose almost completely lost its function of adipogenesis in vivo. Although the wet DAM irradiated with high dose could induce fat regeneration in the early stage, the adipocyte deformation and atrophy appeared in the later stage. The freeze-dried and wet DAM after low dose irradiation was similar to the wet DAM without irradiation in the blank control, which could maintain excellent adipogenic and angiogenic functions in vivo.
Conclusion: High dose Co irradiation can completely destroy the ability of freeze-dried DAM to induce adipose regeneration in situ, while low dose irradiation (5 kGy) can effectively sterilize the DAM without damaging in vivo induced adipose regeneration. Radiation has more damage to freeze-dried DAM than wet DAM in adipogenesis properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.202300098 | DOI Listing |
Bioact Mater
December 2025
Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
Craniofacial muscles are essential for a variety of functions, including fine facial expressions. Severe injuries to these muscles often lead to more devastating consequences than limb muscle injuries, resulting in the loss of critical functions such as mastication and eyelid closure, as well as facial aesthetic impairment. Therefore, the development of targeted repair strategies for craniofacial muscle injuries is crucial.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Dermatology and Venereology, Medical University of Bialystok, Bialystok, Poland.
Adipose-derived mesenchymal stem cells (ADMSCs) offer a multifaceted approach to treating immune-mediated skin diseases by modulating the immune system and promoting tissue regeneration. Specifically, their ability to differentiate into multiple cell types such as keratinocytes and fibroblasts, modulate immune responses, and release growth factors and cytokines underscores their potential in treating a wide range of immune-related skin conditions. ADMSCs significantly reduced various aspects of psoriasis, including scaling, thickness, and erythema.
View Article and Find Full Text PDFExp Cell Res
September 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City 610041, China. Electronic address:
Adipose-derived mesenchymal stem cells (ADSCs) hold great promise for bone tissue repair and regeneration. Circular RNAs (circRNAs) play a crucial role in regulating the osteogenic differentiation and bone remodeling of ADSCs; however, the underlying molecular mechanisms remain unclear. In this study, we conducted whole transcriptome sequencing (WTS) on ADSCs and constructed a competing endogenous RNA (ceRNA) regulatory network to identify the circTTC3/miR-205/mothers against decapentaplegic homolog 3 (Smad3) signaling axis.
View Article and Find Full Text PDFInjury
August 2025
Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:
Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.
Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitor cells that can be derived from a variety of sources including bone marrow and adipose tissues among others. MSCs are plastic adherent and easy to culture , making them attractive platforms for cell-based technologies. They have an impressive immunoplasticity and can express a suppressive or inflammatory phenotype depending on their stimuli.
View Article and Find Full Text PDF