98%
921
2 minutes
20
Ceramic LiAlTi(PO) (LATP) with high ionic conductivity and stability in ambient atmosphere is considered to be potent as a solid-state electrolyte of solid-state lithium metal batteries (SSLMBs), but its huge interfacial impedance with electrodes and the unwanted Ti-mediated reduction reaction caused by the lithium (Li) metal anode greatly limit its application in LMBs. Herein, a composite polymer electrolyte (CPET) was integrated by in situ gelation of dual-permeable 1, 3-dioxolane (DOL) in the tandem framework composed of the commercial cellulose membrane TF4030 and a porous three-dimensional (3D) skeleton-structured LATP. The in situ gelled DOL anchored in the tandem framework ensured nice interfacial contact between the as-prepared CPET and electrodes. The introduction of the porous 3D LATP endowed CPET the increased lithium-ion migration number (t) of 0.70, a wide electrochemical stability window (ESW) of 4.86 V, and a high ionic conductivity of 1.16 × 10 S cm at room temperature (RT). Meanwhile, the side reaction of the LATP/Li metal was adequately restrained by inserting TF4030 between the porous LATP and Li anode. Profiting from the superb interfacial stability and the enhanced ionic transport capacity of CPET, Li/Li batteries based on the optimal CPET (CPET2) cycled over 2000 h at 20∼30 °C smoothly. Moreover, solid-state LiFePO (LFP)/Li with CPET2 exhibited excellent electrochemical performance with a capacity retention ratio of 72.2% after 400 cycles at 0.5C. This work offers an integrated strategy to guide the fabrication of a highly conductive solid electrolyte and a stable interface design for high-performance SSLMBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c06511 | DOI Listing |
PNAS Nexus
September 2025
Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA.
DNA data storage is a promising alternative to conventional storage due to high density, low energy consumption, durability, and ease of replication. While information can be encoded into DNA via synthesis, high costs and the lack of rewriting capability limit its applications beyond archival storage. Emerging "hard drive" strategies seek to encode data onto universal DNA templates without de novo synthesis, using methods such as DNA nanostructures and base modifications.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China. Electronic address:
Artificial cytoskeletons are constructed to study the structure and function of eukaryotic cells. Metal-organic frameworks (MOFs) provide a strong foundation for the construction of artificial cytoskeleton by encapsulating enzyme, yet challenges such as random enzyme distribution and poor catalytic efficiency, impede the development of artificial cytoskeleton technologies. Herein, a multilayer MOFs-based programmable artificial cytoskeleton was constructed through a heterogeneous interfacial growth method, utilizing hierarchical encapsulation of enzymes to facilitate tandem biocatalytic reactions.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
Agro-Food Technology and Quality Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Rabat, Morocco. Electronic address:
The composition of the injection solvent is a critical, yet often underestimated, parameter in liquid chromatography-tandem mass spectrometry (LC-MS/MS). This study systematically evaluates the influence of injection solvent on the analysis of 90 pesticides by comparing mixtures of acetonitrile (ACN) with water and buffered mobile phase A (5 mM ammonium formate, 0.1% formic acid) across various ratios (10/90 to 50/50, v/v).
View Article and Find Full Text PDFCell
September 2025
Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Baden-Württe
Single-cell metabolomics (SCM) promises to reveal metabolism in its complexity and heterogeneity, yet current methods struggle with detecting small-molecule metabolites, throughput, and reproducibility. Addressing these gaps, we developed HT SpaceM, a high-throughput SCM method combining cell preparation on custom glass slides, small-molecule matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MS), and batch processing. We propose a unified framework covering quality control, characterization, structural validation, and differential and functional analyses.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle cacce 91, Turin, 10135, Italy.
Food contamination by per- and polyfluoroalkyl substances (PFAS), especially ultra-short-chain (USC) compounds, poses a growing concern due to their environmental persistence and potential health risks. Despite the developing regulatory framework, analytical challenges persist in quantifying polar USC-PFAS in complex content food matrices. This study presents the development and validation of a novel high-performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS) method for the accurate determination of USC-PFAS (carbon chain length from one to four, C1-C4) in tomato-based products (i.
View Article and Find Full Text PDF