Power-controlled acoustofluidic manipulation of microparticles.

Ultrasonics

Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK. Electronic address:

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, surface acoustic wave (SAW) based acoustofluidic separation of microparticles and cells has attracted increasing interest due to accuracy and biocompatibility. Precise control of the input power of acoustofluidic devices is essential for generating optimum acoustic radiation force to manipulate microparticles given their various parameters including size, density, compressibility, and moving velocity. In this work, an acoustophoretic system is developed by employing SAW based interdigital electrode devices. Power meters are applied to closely monitor the incident and reflected powers of the SAW device, which are associated with the separation efficiency. There exists a range of input powers to migrate the microparticles to the pressure node due to their random locations when entering the SAW field. Theoretical analysis is performed to predict a proper input power to separate mixtures of polystyrene microspheres, and the end lateral position of microspheres being acoustically separated. The separation efficiency of four sizes of microspheres, including 20 µm, 15 µm, 10 µm, and 5 µm, is calculated and compared with experimental results, which suggest the input power for separating the mixture of these microspheres. The study provides a practical guidance on operating SAW devices for bioparticle separation using the incident power as a control parameter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2023.107087DOI Listing

Publication Analysis

Top Keywords

input power
12
separation efficiency
8
power
5
power-controlled acoustofluidic
4
acoustofluidic manipulation
4
microparticles
4
manipulation microparticles
4
microparticles surface
4
surface acoustic
4
acoustic wave
4

Similar Publications

A directional self-priming continuous-driven compartmentalized microfluidic chip for multiplexed pathogen detection.

Analyst

September 2025

Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.

Rapid and efficient screening of foodborne pathogens is crucial for preventing bacterial spread and food poisoning. However, developing a multi-detection method that is easy to operate, offers good stability, and achieves high efficiency remains an enormous challenge. Existing multiplexed nucleic acid detection methods suffer from complex designs, leading to complicated operations, and non-robust sample introduction, causing primer/probe crosstalk and false-positive results.

View Article and Find Full Text PDF

Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Dynamic dual-mode terahertz device with nonvolatile switching for integrated on-chip and free-space applications.

Microsyst Nanoeng

September 2025

Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.

View Article and Find Full Text PDF

For nearly 350 years, the process of disseminating scientific knowledge has remained largely unchanged. Scientists conduct experiments, analyze the data, and publish their findings in the form of scientific articles. Since the turn of the century, this process has been challenged by numerous open science and data sharing efforts to enhance transparency, reproducibility, and replicability of scientific research.

View Article and Find Full Text PDF

In unstructured environments, robots face challenges in efficiently and accurately grasping irregular, fragile objects. To address this, this paper introduces a soft robotic hand tailored for such settings and enhances You Only Look Once v5s (YOLOv5s), a lightweight detection algorithm, to achieve efficient grasping. A rapid pneumatic network-based soft finger structure, broadly applicable to various irregularly placed objects, is designed, with a mathematical model linking the bending angle of the fingers to input gas pressure, validated through simulations.

View Article and Find Full Text PDF