Structural, rheological and functional properties of ultrasonic treated xanthan gums.

Int J Biol Macromol

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Xanthan gum can improve the freeze-thaw stability of frozen foods. However, the high viscosity and long hydration time of xanthan gum limits its application. In this study, ultrasound was employed to reduce the viscosity of xanthan gum, and the effect of ultrasound on its physicochemical, structural, and rheological properties was investigated using High-performance size-exclusion chromatography (HPSEC), ion chromatograph, methylation analysis, H NMR, rheometer, etc.. The application of ultrasonic-treated xanthan gum was evaluated in frozen dough bread. Results showed that the molecular weight of xanthan gum was reduced significantly by ultrasonication (from 3.0 × 10 Da to 1.4 × 10 Da), and the monosaccharide compositions and linkage patterns of sugar residues were altered. Results revealed that ultrasonication treatment mainly broke the molecular backbone at a lower intensity, then mainly broke the side chains with increasing intensity, which significantly reduced the apparent viscosity and viscoelastic properties of xanthan gum. The results of specific volume and hardness showed that the bread containing low molecular weight xanthan gum was of better quality. Overall, this work offers a theoretical foundation for broadening the application of xanthan gum and improving its performance in frozen dough.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.125650DOI Listing

Publication Analysis

Top Keywords

xanthan gum
32
xanthan
9
structural rheological
8
gum
8
frozen dough
8
molecular weight
8
weight xanthan
8
rheological functional
4
functional properties
4
properties ultrasonic
4

Similar Publications

Exploring the effect of Curdlan and xanthan on physicochemical properties and multiscale structure of rice starch during extrusion.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. Electronic address:

Hydrocolloids are utilized in starch-based foods for water-holding, thickening, and gelation, yet their molecular interactions with starch in extrusion systems remain underexplored; this study evaluates physicochemical and multiscale structural changes in extruded starch incorporating curdlan (CG) and xanthan (XG). Incorporation of CG and XG significantly counteracted the disruption of the multiscale structure of starch caused by the extrusion treatment, and increased the content of resistant starch. It reduced the content of rapidly digestible starch in extruded starch by 4.

View Article and Find Full Text PDF

Unlabelled: This study was performed to evaluate the effects of added ingredients such as modified starch (MS), xanthan gum (XG), sugar, (SU), salt (SA), and vinegar (VIN) on the water mobility and physicochemical properties of model tomato ketchup and to investigate the correlation between the obtained variables and serum separation. The type and concentration of ingredients added to the tomato paste (TP) had significant effects on experimental variables, including the serum separation rate, water mobility, and viscosity. Serum separation was most severe in SU and VIN- added samples and minimal in MS and XG- added samples.

View Article and Find Full Text PDF

Polysaccharide copolymeric conjugates and their applications in targeted cancer therapy.

Int J Biol Macromol

September 2025

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India. Electronic address:

Polysaccharide copolymers Conjuates have surfaced as a versatile foundation in the development of advanced smart drug delivery systems, owing to their inherent biocompatibility, biodegradability, and capacity for chemical modification. This review brings into focus the recent advances in co-polymeric drug delivery systems based on naturally occurring polysaccharides like chitosan, alginate, dextran, hyaluronic acid, pullulan, guar gum, xanthan gum, agarose, gellan gum, and starch. Their structural malleability and functionalization capabilities are emphasized to engineer therapeutic payload stability, bioavailability, and controlled release.

View Article and Find Full Text PDF

Inhibition mechanisms of xanthan gum on high-dose gallic acid-induced functional deterioration of myofibrillar protein: Focusing on gelling and emulsification behaviors.

Carbohydr Polym

November 2025

Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China. Electronic address: wzj

For purpose of overcoming the negative impact of high-dose phenols on meat quality, xanthan gum (XG), a natural anionic polysaccharide, was employed to prevent the undesirable interaction between myofibrillar protein (MP) and gallic acid (GA, 150 μmol/g) and ameliorate the gel and emulsification characteristics of MP. XG dose-dependently alleviated the structural damage of MP caused by GA and reduced protein aggregation, manifested as the decrease in surface hydrophobicity, turbidity and aggregate size (p < 0.05) and increase in α-helix content and intrinsic fluorescence.

View Article and Find Full Text PDF

Pores scale flows through contractions and expansions are relevant in geoengineering, microfluidics and material processing These flows experience shearing and extensional kinematics near constrictions, where polymer solutions may demonstrate instabilities that arise from the fluid's nonlinear rheological characteristics even in creeping flows. The relative effect of shearing and extension can be controlled by the flow geometry. Following our earlier reports on the constriction length (M.

View Article and Find Full Text PDF