Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Saline-alkali stress is a significant abiotic stress factor that impacts plant growth, development, and crop yield. Consistent with the notion that genome-wide replication events can enhance plant stress resistance, autotetraploid rice exhibited a higher level of tolerance to saline-alkali stress than its donor counterparts, which is reflected by differential gene expression between autotetraploid and diploid rice in response to salt, alkali, and saline-alkali stress. In this study, we investigated the expression of the transcription factors (TFs) in the leaf tissues of autotetraploid and diploid rice under different types of saline-alkali stress. Transcriptome analysis identified a total of 1040 genes from 55 TF families that were altered in response to these stresses, with a significantly higher number in autotetraploid rice compared to diploid rice. Contrarily, under these stresses, the number of expressed TF genes in autotetraploid rice was greater than that in diploid rice for all three types of stress. In addition to the different numbers, the differentially expressed TF genes were found to be from significantly distinct TF families between autotetraploid and diploid rice genotypes. The GO enrichment analysis unraveled that all the DEGs were distributed with differentially biological functions in rice, in particular those that were enriched in the pathways of phytohormones and salt resistance, signal transduction, and physiological and biochemical metabolism in autotetraploid rice compared to its diploid counterpart. This may provide useful guidance for studying the biological roles of polyploidization in plant resilience in response to saline-alkali stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298515PMC
http://dx.doi.org/10.3390/genes14061151DOI Listing

Publication Analysis

Top Keywords

autotetraploid rice
20
saline-alkali stress
20
diploid rice
20
autotetraploid diploid
12
rice
11
transcription factors
8
autotetraploid
8
stress
8
rice compared
8
compared diploid
8

Similar Publications

Identification of a Novel Rice Chromosomal Translocation Line that Could Cause the Heterozygote Semi-Sterility and be Overcome by Genomic Duplication.

Rice (N Y)

August 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.

Interspecific and intersubspecific hybrid rice have demonstrated substantial heterosis and increased yield potential, yet they are frequently restricted by complex hybrid sterility (HS). Gene regulation has primarily been used to explain the genetic mechanism of HS; however, it is still unclear how cryptic chromosomal structural hybridity results in heterozygote semi-sterility at the molecular level. This study identified a T-DNA-mediated heterozygous mutant mfss (male and female semi-sterility) in rice, of which the self-pollinated progeny would produce heterozygous semi-sterile mutant plants and homozygous fertile mutant plants, mm, with homozygous in inserted T-DNA.

View Article and Find Full Text PDF

Theory predicts that in the absence of selection, a newly formed segmental allopolyploid will become 'autopolyploidized' if homoeologous exchanges (HEs) occur freely. Moreover, because selection against meiotic abnormalities is expected to be strong in the initial generations, we anticipate HEs to be uncommon in evolved segmental allopolyploids. Here we analysed the whole-genome composition of 202 phenotypically homogeneous and stable rice tetraploid recombinant inbred lines (TRILs) derived from Oryza sativa subsp.

View Article and Find Full Text PDF

Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.

View Article and Find Full Text PDF

Autotetraploid rice is a useful germplasm for polyploid rice breeding in improving nutritional values. Nevertheless, underlying mechanism of starch and lipid accumulation in tetraploid rice caryopsis remains largely unknown. Here, regulatory mode of starch and triacylglycerol (TAG) synthesis during grain-filling stage in diploid and tetraploid indica rice varieties 9311 was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Pangenomics is becoming important in plant genomics, with many major crops having their genomes sequenced, though polyploid species like wheat and cotton have fewer pangenome resources available.
  • This review discusses the methods used in developing crop pangenomes, tackles challenges encountered, and provides a systematic guide, using alfalfa as a case study for polyploid species.
  • Pangenome resources help uncover important genetic information, and accessible online tools for visualizing pangenomes are expanding their use among scientists and breeders.
View Article and Find Full Text PDF