98%
921
2 minutes
20
Breast carcinoma is a molecularly diverse illness, and it is among the most prominent and often reported malignancies in female across the globe. Surgical intervention, chemotherapy, immunotherapy, gene therapy, and endocrine treatment are among the currently viable treatment options for the carcinoma of breast. Chemotherapy is among the most prevalent cancer management strategy. Doxorubicin (DOX) widely employed as a cytostatic medication for the treatment of a variety of malignancies. Despite its widespread acceptance and excellent efficacy against an extensive line up of neoplasia, it has a variety of shortcomings that limit its therapeutic potential in the previously mentioned indications. Employment of nanoparticulate systems has come up as a unique chemo medication delivery strategy and are being considerably explored for the amelioration of breast carcinoma. Polylactic-co-glycolic acid (PLGA)-based nano systems are being utilized in a number of areas within the medical research and medication delivery constitutes one of the primary functions for PLGA given their inherent physiochemical attributes, including their aqueous solubility, biocompatibility, biodegradability, versatility in formulation, and limited toxicity. Herein along with the different application of PLGA-based nano formulations in cancer therapy, the present review intends to describe the various research investigations that have been conducted to enumerate the effectiveness of DOX-encapsulated PLGA nanoparticles (DOX-PLGA NPs) as a feasible treatment option for breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116455 | DOI Listing |
J Environ Pathol Toxicol Oncol
January 2025
Department of Clinical Laboratory Medicine, Fujian Medical University, Fuzhou, China.
Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.
View Article and Find Full Text PDFJMIR Cancer
September 2025
Department of Health Outcomes and Biomedical Informatics, University of Florida, 1889 Museum Road, Suite 7000, Gainesville, FL, 32611, United States, 1 352 294-5969.
Background: Disparities in cancer burden between transgender and cisgender individuals remain an underexplored area of research.
Objective: This study aimed to examine the cumulative incidence and associated risk factors for cancer and precancerous conditions among transgender individuals compared with matched cisgender individuals.
Methods: We conducted a retrospective cohort study using patient-level electronic health record (EHR) data from the University of Florida Health Integrated Data Repository between 2012 and 2023.
PLoS One
September 2025
Korea University College of Medicine, Seoul, Republic of Korea.
Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.
Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.
PLoS One
September 2025
Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur, Bangladesh.
Background: Overexpression of rs3761936 of DCLRE1B gene has been observed in both breast cancer and cervical cancer patients. To justify the association of this polymorphism with these cancers, we performed this case-control study.
Method: A total of 245 cancer patients and 108 healthy controls participated in the research.
PLoS One
September 2025
Department of Zoology, Baba Guru Nanak University, Nankana Sahib, Pakistan.
Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.
View Article and Find Full Text PDF