Leucine-Restricted Diet Ameliorates Obesity-Linked Cognitive Deficits: Involvement of the Microbiota-Gut-Brain Axis.

J Agric Food Chem

Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Leucine restriction (LR) improves insulin resistance and promotes white adipose tissue browning. However, the effect of LR on obesity-associated cognitive impairment remains unclear. The present study found that an 8-week LR dramatically improved high-fat diet (HFD)-induced cognitive decline by preventing synaptic dysfunction, increasing the expressions of neurotrophic factors, and inhibiting neuroinflammation in memory-related brain regions. Moreover, LR notably reshaped the structure of gut microbiota, which was manifested by downregulating the Firmicutes/Bacteroidetes ratio, reducing the relative abundance of inflammation-related bacteria including , , , and but increasing short-chain fatty acid (SCFA)-producing bacterial genera including , , , and . Notably, HFD-caused SCFA reduction, gut barrier damage, and LPS leakage were recovered by LR. Our findings suggested that LR could serve as an effective approach to attenuate obesity-induced cognitive deficits, which may be achieved by balancing gut microbiota homeostasis and enhancing SCFA production.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c01524DOI Listing

Publication Analysis

Top Keywords

cognitive deficits
8
gut microbiota
8
leucine-restricted diet
4
diet ameliorates
4
ameliorates obesity-linked
4
cognitive
4
obesity-linked cognitive
4
deficits involvement
4
involvement microbiota-gut-brain
4
microbiota-gut-brain axis
4

Similar Publications

Acute or chronic liver damage can result in Hepatic Encephalopathy (HE), a potentially fatal neuropsychiatric condition that leads to cerebral and neurological alterations. Dapagliflozin (DAPA), an orally active Sodium/Glucose cotransporter 2 inhibitor with long duration of action. The study aim was to evaluate the potential protective impact of DAPA against HE caused by Thioacetamide (TAA) in rats.

View Article and Find Full Text PDF

Objectives: Alexithymia is characterized by difficulties in identifying and describing one's own emotions. Alexithymia has previously been associated with deficits in the processing of emotional information at both behavioral and neurobiological levels, and some studies have shown elevated levels of alexithymic traits in adults with hearing loss. This explorative study investigated alexithymia in young and adolescent school-age children with hearing aids in relation to (1) a sample of age-matched children with normal hearing, (2) age, (3) hearing thresholds, and (4) vocal emotion recognition.

View Article and Find Full Text PDF

Mechanistic Insights and Translational Therapeutics of Neurovascular Unit Dysregulation in Vascular Cognitive Impairment.

J Integr Neurosci

August 2025

Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, 211166 Nanjing, Jiangsu, China.

Cognitive impairment represents a progressive neurodegenerative condition with severity ranging from mild cognitive impairment (MCI) to dementia and exerts significant burdens on both individuals and healthcare systems. Vascular cognitive impairment (VCI) represents a heterogeneous clinical continuum, spanning a spectrum from subcortical ischemic VCI (featuring small vessel disease, white matter lesions, and lacunar infarcts) to mixed dementia, where vascular and Alzheimer's-type pathologies coexist. While traditionally linked to macro- and microvascular dysfunction, the mechanisms underlying VCI remain complex.

View Article and Find Full Text PDF

Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.

View Article and Find Full Text PDF

Neurocognitive disorders represent a significant global health challenge and are characterized by progressive cognitive decline across conditions including Alzheimer's disease, mild cognitive impairment, and diabetes-related cognitive impairment. The hippocampus is essential for learning and memory and requires intact neuroplasticity to maintain cognitive function. Recent evidence has identified the brain insulin signaling pathway as a key regulator of hippocampal neuroplasticity through multiple cellular processes including synaptic plasticity, neurotransmitter regulation, and neuronal survival.

View Article and Find Full Text PDF