Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial diversity is an important indicator of soil fertility and plays an indispensable role in farmland ecosystem sustainability. The short-term effects of fertilization and rhizobium inoculation on soil microbial diversity and community structure have been explored extensively; however, few studies have evaluated their long-term effects. Here, we applied quantitative polymerase chain reaction (qPCR) and amplicon sequencing to characterize the effect of 10-year fertilizer and rhizobium inoculation on bacterial communities in soybean bulk and rhizosphere soils at the flowering-podding and maturity stages. Four treatments were examined: non-fertilization control (CK), phosphorus and potassium fertilization (PK), nitrogen and PK fertilization (PK + N), and PK fertilization and 5821 (PK + R). Long-term co-application of rhizobium and PK promoted soybean nodule dry weight by 33.94% compared with PK + N, and increased soybean yield by average of 32.25%, 5.90%, and 5.00% compared with CK, PK, and PK + N, respectively. The pH of PK + R was significantly higher than that of PK and PK + N at the flowering-podding stage. The bacterial abundance at the flowering-podding stage was positively correlated with soybean yield, but not at the maturity stage. The significant different class Gemmatimonadetes, and the genera , and in soil at the flowering-podding stage were negatively correlated with soybean yield. However, the bacterial community at class and genus levels at maturity had no significant effect on soybean yield. The key bacterial communities that determine soybean yield were concentrated in the flowering-podding stage, not at maturity stage. Rhizosphere effect, growth period, and treatment synergies resulted in significant differences in soil bacterial community composition. Soil organic matter (OM), total nitrogen (TN), pH, and available phosphorus (AP) were the main variables affecting bacterial community structure. Overall, long-term co-application of rhizobium and fertilizer not only increased soybean yield, but also altered soil bacterial community structure through niche reconstruction and microbial interaction. Rhizobium inoculation plays key role in reducing nitrogen fertilizer application and promoting sustainable agriculture practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232743PMC
http://dx.doi.org/10.3389/fmicb.2023.1161983DOI Listing

Publication Analysis

Top Keywords

soybean yield
28
bacterial community
20
rhizobium inoculation
16
flowering-podding stage
16
soil bacterial
12
community structure
12
soybean
9
bacterial
8
community composition
8
microbial diversity
8

Similar Publications

Cell wall invertase improves grain nutrition via regulating sugar and hormone metabolism gene expression in transgenic soybean.

Ann Bot

September 2025

The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, China 264025.

Background And Aims: Cell wall invertases have multiple roles in plant growth and development, yet their biological functions in seed oil production are still not understood.

Methods: In the present study, the Oryza sativa (rice) cell wall invertase gene OsGIF1 (GRAIN INCOMPLETE FILLING 1) was ectopically expressed in Glycine max (Soybean) and its functions in grain yield and seed nutrition was investigated.

Key Results: We found that constitutive expression of OsGIF1 significantly improved biomass production, grain yield and seed nutrition in transgenic plants.

View Article and Find Full Text PDF

Understanding how interactive management practices and climatic behavior influence soybean [Glycine max (L.) Merr.] productivity is imperative to inform future production systems under changing climate.

View Article and Find Full Text PDF

The hidden dimension of oil extraction using green solvents on the physicochemical and structural properties of crude oil and defatted meals.

Food Chem

September 2025

Chemical Engineering Department, Universidade Federal de Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, Rio Grande do Sul, Brazil. Electronic address:

Green solvents offer promising alternatives to n-hexane for sustainable vegetable oil extraction. This study evaluated ethanol, isopropanol, acetone, and ethyl acetate for extracting oils from avocado pulp (AP), rice bran (RB), and soybean flakes (SF), focusing on oil quality and defatted meal properties. lnγ obtained by COSMO-SAC showed tendencies for effective interactions with solutes.

View Article and Find Full Text PDF

Fully Erasable Amphibious Adhesives Derived from Soybean Oil with Record-High Underwater Adhesion Strength.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Developing amphibious adhesives that combine high adhesion strength with on-demand erasability in both dry and wet environments remains a significant challenge. In this study, biomass-derived, amphibious, and erasable adhesives are fabricated by grafting 3-aminobenzoic acid and 3-aminobenzeneboronic acid onto epoxidized soybean oil (ESO), yielding ESO-Am adhesives. These adhesives are dynamically cross-linked with boroxines, hydrogen bonds, and hydrogen-bonded hydrophobic nanodomains.

View Article and Find Full Text PDF