Boosting the Methanol Oxidation Reaction Activity of Pt-Ru Clusters via Resonance Energy Transfer.

Small

Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The sluggish kinetics of the methanol oxidation reaction (MOR) with PtRu electrocatalyst severely hinder the commercialization of direct methanol fuel cells (DMFCs). The electronic structure of Pt is of significant importance for its catalytic activity. Herein, it is reported that low-cost fluorescent carbon dots (CDs) can regulate the behavior of the D-band center of Pt in PtRu clusters through resonance energy transfer (RET), resulting in a significant increase in the catalytic activity of the catalyst participating in methanol electrooxidation. For the first time, the bifunction of RET is used to provide unique strategy for fabrication of PtRu electrocatalysts, not only tunes the electronic structure of metals, but also provides an important role in anchoring metal clusters. Density functional theory calculations further prove that charge transfer between CDs and Pt promotes the dehydrogenation of methanol on PtRu catalysts and reduces the free energy barrier of the reaction associated with the oxidation of CO to CO . This helps to improve the catalytic activity of the systems participating in MOR. The performance of the best sample is 2.76 times higher than that of commercial PtRu/C (213.0 vs 76.99  ). The fabricated system can be potentially used for the efficient fabrication of DMFCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202302149DOI Listing

Publication Analysis

Top Keywords

catalytic activity
12
methanol oxidation
8
oxidation reaction
8
clusters resonance
8
resonance energy
8
energy transfer
8
electronic structure
8
boosting methanol
4
activity
4
reaction activity
4

Similar Publications

Design of Z-scheme WSSe-XS (X = Zr and Hf) heterostructures as photocatalysts for efficient solar water splitting.

Phys Chem Chem Phys

September 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.

View Article and Find Full Text PDF

The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.

View Article and Find Full Text PDF

Recent Advances in P450 Enzyme Engineering for the Production of Natural Products.

Chembiochem

September 2025

Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.

Natural products exhibit a wide range of biological activities and are the crucial resources for drug development and compound modification. Cytochrome P450 enzymes (P450s, CYP) are a class of multifunctional and stereoselective biocatalysts that utilize heme as a cofactor and can be employed in the biosynthesis of natural products. With the development of biotechnology, P450s have been widely applied in the synthesis of natural products.

View Article and Find Full Text PDF

Jasmonates are plant hormones that regulate plant defense and development. 7-iso-Jasmonoyl-l-isoleucine (JA-Ile) is a representative active jasmonate which is biosynthesized from 7-iso-jasmonic acid (JA) by the jasmonoyl-amido synthases JASMONATE RESISTANT 1 (JAR1) and AtGH3.10 in Arabidopsis thaliana.

View Article and Find Full Text PDF

The transition to a net-zero carbon economy hinges on the development of sustainable, efficient, and economically viable energy technologies. Here, we present a green, electricity-free auto-combustion synthesis of a multifunctional FeNi@MnO@C electrocatalyst, demonstrating outstanding performance for OER, HER, OWS, UOR, UOS, and OWS in alkaline seawater with a required potential of 1.45, 0.

View Article and Find Full Text PDF