Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Osteosarcoma (OS) is a fatal adolescent tumor, which is susceptible to remote metastases at an early stage, and its treatment remains a major challenge. ubiquitin-specific protease 10 (USP10) is primarily located in the cytoplasm and can therefore deubiquitinate various cytoplasmic proteins. However, the expression and mechanism of USP10 in OS remain ambiguous. The aim of this study was to explore how USP10 affects Yes-associated protein1 (YAP1) to influence the metastasis and epithelial-mesenchymal transition (EMT).

Methods: Western blotting, qRT-PCR, and immunohistochemical (IHC) analyses were performed to evaluate USP10 and YAP1 levels. Using wound healing and transwell tests, the roles and molecular pathways of USP10 and YAP1 ability to migrate and invade of OS were investigated, and cell morphological alterations were examined using phalloidin staining.

Results: Our results indicated that USP10, a new type of deubiquitinating protease, is increased in OS tissues and cells contrasted with adjacent healthy tissues. Overexpression of USP10 correlated with tumor size, distant metastasis, and TNM stage, and was an independent factor of poor prognosis in OS patients. Also, USP10 expression is closely connected with the incident of OS metastasis and tumor size. Functional assays revealed that USP10 knockdown suppressed cell migrating and invading ability and inhibited the EMT of OS cells in vivo and in vitro. In addition, we showed that USP10 knockdown decreased the levels of YAP1, which is an important positive regulator of migration and invasion in many cancers. We also found a significant positive correlation between USP10 and YAP1 levels, further demonstrating that USP10-induced migration and EMT are based on YAP1 in OS cells. In a mechanistic way, USP10 stabilizes the expression of YAP1 by mediating its deubiquitination in OS cells.

Conclusion: Together, this study showed that USP10 can directly interact with YAP1 to reduce ubiquitinated YAP1, thereby stabilizing its protein levels and affecting EMT and distant metastasis in OS cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358238PMC
http://dx.doi.org/10.1002/cam4.6074DOI Listing

Publication Analysis

Top Keywords

usp10
14
usp10 yap1
12
yap1
10
metastasis epithelial-mesenchymal
8
epithelial-mesenchymal transition
8
yap1 levels
8
tumor size
8
distant metastasis
8
usp10 knockdown
8
metastasis
5

Similar Publications

Engineered Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Mitigate Liver Fibrosis by Delivering USP10 to Reprogram Macrophage Phenotype.

Biomater Res

August 2025

Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.

The utilization of mesenchymal stem cells (MSCs) serves as an encouraging strategy for treating liver fibrosis. However, precise mechanisms are not completely understood. Recently, small extracellular vesicles (sEVs) have emerged as major paracrine effectors mediating the anti-fibrotic effects of MSCs.

View Article and Find Full Text PDF

Lung cancer remains a leading cause of cancer-related mortality, underscoring the urgent need for more effective therapeutic strategies, particularly due to the frequent development of drug resistance. Paclitaxel, a widely used chemotherapeutic agent for non-small cell lung cancer (NSCLC), often faces resistance that limits its clinical efficacy. Therefore, identifying molecular markers that modulate paclitaxel responsiveness is critical.

View Article and Find Full Text PDF

Multifunctional regulation and treatment of ubiquitin specific protease 10.

Biochem Pharmacol

August 2025

School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250307, China. Electronic address:

USP10 is a critical deubiquitinating enzyme within the ubiquitin-specific protease family, playing multifaceted roles in cellular physiology and disease pathogenesis. Structurally composed of a G3BP1-interacting motif, a N-terminal domain (mediating most protein interactions), and a catalytic USP domain (residues 415-795, catalytic triad C424-H736-D751), USP10 regulates diverse cellular pathways by stabilizing key proteins through deubiquitination. It exhibits context-dependent functional duality, particularly in cancer: USP10 promotes tumorigenesis in various cancers (e.

View Article and Find Full Text PDF

Sepsis is a condition resulting from the uncontrolled immune response to infection, leading to widespread inflammatory damage and potentially fatal organ dysfunction. Currently, there is a lack of specific prevention and treatment strategies for sepsis across different age groups. Programmed Cell Death (PCD) can regulate the enrichment of effector immune cells or regulatory immune cells, providing a new perspective for immunotherapy.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) are a class of noncoding RNAs primarily found in germ cells. While piRNAs are known to be involved in various cancers, their specific roles in colorectal cancer (CRC) remain unclear. To elucidate the role of piRNAs in CRC, we first analyzed their expression characteristics by sequencing 10 pairs of tumor and adjacent normal tissues.

View Article and Find Full Text PDF