Recognition of an Ala-rich C-degron by the E3 ligase Pirh2.

Nat Commun

The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China. don

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ribosome-associated quality-control (RQC) pathway degrades aberrant nascent polypeptides arising from ribosome stalling during translation. In mammals, the E3 ligase Pirh2 mediates the degradation of aberrant nascent polypeptides by targeting the C-terminal polyalanine degrons (polyAla/C-degrons). Here, we present the crystal structure of Pirh2 bound to the polyAla/C-degron, which shows that the N-terminal domain and the RING domain of Pirh2 form a narrow groove encapsulating the alanine residues of the polyAla/C-degron. Affinity measurements in vitro and global protein stability assays in cells further demonstrate that Pirh2 recognizes a C-terminal A/S-X-A-A motif for substrate degradation. Taken together, our study provides the molecular basis underlying polyAla/C-degron recognition by Pirh2 and expands the substrate recognition spectrum of Pirh2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148881PMC
http://dx.doi.org/10.1038/s41467-023-38173-6DOI Listing

Publication Analysis

Top Keywords

ligase pirh2
8
aberrant nascent
8
nascent polypeptides
8
pirh2
7
recognition ala-rich
4
ala-rich c-degron
4
c-degron ligase
4
pirh2 ribosome-associated
4
ribosome-associated quality-control
4
quality-control rqc
4

Similar Publications

: Doxorubicin (DOX) is a widely employed chemotherapeutic drug, while its clinical use is limited by the lethal cardiotoxicity. Previous studies highlighted the critical role of cardiomyocyte ferroptosis in the pathogenesis of DOX-induced cardiotoxicity (DIC). Androgen-induced gene 1 (AIG1) is perceived as a key regulator of oxidative stress-mediated cell death.

View Article and Find Full Text PDF

Background: Aside from the canonical role of PDL1 as a tumour surface-expressed immune checkpoint molecule, tumour-intrinsic PDL1 signals regulate non-canonical immunopathological pathways mediating treatment resistance whose significance, mechanisms, and therapeutic targeting remain incompletely understood. Recent reports implicate tumour-intrinsic PDL1 signals in the DNA damage response (DDR), including promoting homologous recombination DNA damage repair and mRNA stability of DDR proteins, but many mechanistic details remain undefined.

Methods: We genetically depleted PDL1 from transplantable mouse and human cancer cell lines to understand consequences of tumour-intrinsic PDL1 signals in the DNA damage response.

View Article and Find Full Text PDF

Leukemia is a global health concern that requires alternative treatments due to the limitations of the FDA-approved drugs. Our focus is on p53, a crucial tumor suppressor that regulates cell division. It appears possible to stabilize p53 without causing damage to DNA by investigating dual-acting inhibitors that target both ligases.

View Article and Find Full Text PDF

Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aβ induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, βamyloid, acetylcholinesterase activity, and neuronal death.

View Article and Find Full Text PDF

The ribosome-associated protein quality control (RQC) pathway acts as a translational surveillance mechanism to maintain proteostasis. In mammalian cells, the cytoplasmic RQC pathway involves nuclear export mediator factor (NEMF)-dependent recruitment of the E3 ligase Listerin to ubiquitinate ribosome-stalled nascent polypeptides on the lysine residue for degradation. However, the quality control of ribosome-stalled nuclear-encoded mitochondrial nascent polypeptides remains elusive, as these peptides can be partially imported into mitochondria through translocons, restricting accessibility to the lysine by Listerin.

View Article and Find Full Text PDF