A Novel Functionalized MoS-Based Coating for Efficient Solar Desalination.

Materials (Basel)

College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molybdenum disulfide (MoS) has emerged as a promising photothermal material for solar desalination. However, its limitation in integrating with organic substances constrains its application because of the lack of functional groups on its surface. Here, this work presents a functionalization approach to introduce three different functional groups (-COOH -OH -NH) on the surface of MoS by combining them with S vacancies. Subsequently, the functionalized MoS was coated on the polyvinyl alcohol-modified polyurethane sponge to fabricate a MoS-based double-layer evaporator through an organic bonding reaction. Photothermal desalination experiments show that the functionalized material has higher photothermal efficiency. The evaporation rate of the hydroxyl functionalized the MoS evaporator evaporation rate is 1.35 kg m h, and the evaporation efficiency is 83% at one sun. This work provides a new strategy for efficient, green, and large-scale utilization of solar energy by MoS-based evaporators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141543PMC
http://dx.doi.org/10.3390/ma16083105DOI Listing

Publication Analysis

Top Keywords

solar desalination
8
functional groups
8
functionalized mos
8
evaporation rate
8
novel functionalized
4
functionalized mos-based
4
mos-based coating
4
coating efficient
4
efficient solar
4
desalination molybdenum
4

Similar Publications

Solar-driven interfacial evaporation technology represents an innovative and high-efficiency desalination approach. This technology plays a crucial role in relieving the shortage of worldwide freshwater resources. However, the interfacial evaporator still faces great challenges in terms of high efficiency and ensuring long-term evaporation stability, among other aspects.

View Article and Find Full Text PDF

Decoupling Transport of Salt Ions and Water in Hierarchically Structured Hydrogel for High Salinity Desalination.

Adv Mater

September 2025

Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.

View Article and Find Full Text PDF

Sustainable Antimicrobial Silver@MXene Nanofiber Membranes for Enhanced Photothermal Membrane Distillation Performance.

ACS Appl Mater Interfaces

September 2025

Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Solar-driven desalination has emerged as a sustainable and efficient solution for addressing global water scarcity, especially beneficial in remote, off-grid, and disaster-affected regions. Among emerging technologies, photothermal membrane distillation (PMD) stands out due to its effective solar-energy conversion, scalability, and simplicity. Here, we report a hybrid PMD membrane fabricated by electrospinning MXene (TiCT) nanosheets integrated with silver nanoparticles (AgNPs) onto a poly(vinylidene fluoride--hexafluoropropylene) (PH) substrate.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation (SDIE) is an emerging eco-friendly and low-carbon technology and has been widely studied in the field of photothermal applications in recent years. With the attention and development of SDIE in innovation fields, new strategies, structures, and typical materials are gradually being developed and applied. Therefore, it is important to report on these latest developments.

View Article and Find Full Text PDF

With the continuous growth of the global population and the acceleration of industrialization and urbanization, freshwater scarcity has become an increasingly severe challenge. Solar-powered seawater desalination technologies based on interfacial evaporators have received widespread attention. However, the preparation process of interfacial evaporators is complicated, and it is difficult for them to maintain long-term service.

View Article and Find Full Text PDF