98%
921
2 minutes
20
We demonstrate a smartphone integrated handheld (SPEED) digital polymerase chain reaction (dPCR) device for point-of-care application. The device has dimensions of ≈100 × 200 × 35 mm and a weight of ≈400 g. It can perform 45 PCR cycles in ≈49 min. The device also features integrated, miniaturized modules for thermal cycling, image taking, and wireless data communication. These functions are controlled by self-developed Android-based applications. The only consumable is the developed silicon-based dPCR chip, which has the potential to be recycled. The device's precision and accuracy are comparable with commercial dPCR machines. We have verified the SPEED dPCR prototype's utility in the testing of severe acute respiratory syndrome coronavirus 2, the detection of cancer-associated gene sequences, and the confirmations of Down syndrome diagnoses. Due to its low upfront capital investment, as well as its nominal running cost, we envision that the SPEED dPCR device will help to perform cancer screenings and non-invasive prenatal tests for the general population. It will also aid in the timely identification and monitoring of infectious disease testing, thereby expediting alerts with respect to potential emerging pandemics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2023.115319 | DOI Listing |
Anal Chim Acta
November 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:
Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China. Electronic address:
Egg yolk immunoglobulin (IgY) has emerged as a promising alternative to monoclonal antibodies (mAbs) due to its facile extraction, higher yield, and greater tolerance to organic solvents. This work developed a selective IgY antibody against bongkrekic acid (BA) and isobongkrekic acid (IsoBA), the lethal toxins produced by Burkholderia gladioli pv. Cocovenenans (BGC), which led to severe food poisoning incidents and resulted in casualties.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China. Electronic address:
Aptamers are single-stranded DNA or RNA oligonucleotides that can bind to specific target molecules with high affinity and specificity. Fluorescence DNA aptamer-based biosensors (aptasensors) have emerged as powerful analytical tools for detecting diverse targets, ranging from food contaminants to disease biomarkers, owing to their exceptional specificity, high sensitivity, and cost-effectiveness. This review systematically summarizes recent advances in the design strategies of fluorescence aptasensors, focusing on three key approaches: (1) fluorescence resonance energy transfer-based signal amplification, (2) nanomaterial-enhanced probes, and (3) multi-channel platforms for simultaneous detection.
View Article and Find Full Text PDFFood Chem
September 2025
School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China.
A versatile fluorescent molecularly imprinted nanosensor (MIPs@O-CDs) for profiling ciprofloxacin (CIP) was innovatively developed using a controllable post-imprinting modification strategy. High-affinity molecularly imprinted polymers (MIPs) as recognition elements granted nanosensor favorable anti-interference. Bright orange-emission carbon dots (O-CDs) as signal transducers demonstrated prominent reverse fluorescence response to CIP due to inner filter effect, ameliorating detection sensitivity and accuracy.
View Article and Find Full Text PDFJ Fluoresc
September 2025
School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
The pervasive concern regarding veterinary drug residues in food necessitates advanced detection solutions, particularly addressing limitations of conventional methods reliant on large-scale instrumentation that incur prolonged analysis duration, complex sample preparation, and lack of real-time on-site capability. A portable "single response-on" molecularly imprinted ratiometric fluorescent paper-based sensor was developed for quantifying fleroxacin (FLX) residues in animal-derived foods, wherein B, N-co-doped MXene quantum dot (B, N-MQD) was synthesized and combined with BCP-Eu as dual-emission fluorophores, while FLX- molecularly imprinted polymer (FLX-MIP) was engineered using functionalized Nano-SiO as the carrier. Concentration-dependent fluorescence enhancement at 574 nm was exhibited with invariant reference signal at 411 nm, achieving a 36-fold lower detection limit (0.
View Article and Find Full Text PDF