Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many microbes in nature reside in dense, metabolically interdependent communities. We investigated the nature and extent of microbe-virus interactions in relation to microbial density and syntrophy by examining microbe-virus interactions in a biomass dense, deep-sea hydrothermal mat. Using metagenomic sequencing, we find numerous instances where phylogenetically distant (up to domain level) microbes encode CRISPR-based immunity against the same viruses in the mat. Evidence of viral interactions with hosts cross-cutting microbial domains is particularly striking between known syntrophic partners, for example those engaged in anaerobic methanotrophy. These patterns are corroborated by proximity-ligation-based (Hi-C) inference. Surveys of public datasets reveal additional viruses interacting with hosts across domains in diverse ecosystems known to harbour syntrophic biofilms. We propose that the entry of viral particles and/or DNA to non-primary host cells may be a common phenomenon in densely populated ecosystems, with eco-evolutionary implications for syntrophic microbes and CRISPR-mediated inter-population augmentation of resilience against viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159854PMC
http://dx.doi.org/10.1038/s41564-023-01347-5DOI Listing

Publication Analysis

Top Keywords

microbial domains
8
microbe-virus interactions
8
viruses
4
viruses interact
4
interact hosts
4
hosts span
4
span distantly
4
distantly microbial
4
domains dense
4
dense hydrothermal
4

Similar Publications

Background: Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease characterized by insulin resistance and progressive decline in pancreatic beta cell function. It is a public health problem of great magnitude that has been increasing globally over the last 4 decades. The latest research has found that sugar-sweetened beverages (SSBs), as an important dietary risk factor, are closely related to the occurrence and development of T2DM.

View Article and Find Full Text PDF

Low-protein Calorie-restriction Mitigates Diabetic Mice Kidney Injury via the Gut-Kidney Axis.

Int J Vitam Nutr Res

August 2025

Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210028 Nanjing, Jiangsu, China.

Background: Dietary interventions have exhibited promise in restoring microbial balance in chronic kidney disease. A low-protein calorie-restricted diet can reduce kidney injury in diabetic rodents. However, whether the renoprotective effects of this dietary intervention in murine diabetic kidney disease models are linked to gut microbiota modulation remains to be determined.

View Article and Find Full Text PDF

Introduction: Galectin-9 is a β-galactoside-binding lectin that functions as a critical pattern recognition receptor (PRR) in the host immune system, initiating immune defense responses by recognizing and binding to pathogen-associated molecular patterns (PAMPs) on the surface of microorganisms. In this study, we identified and characterized a novel galectin-9 cDNA, designated CcGal-9, from Yellow River carp ().

Methods: The full-length CcGal-9 cDNA was cloned and sequenced, and its structural features were analyzed.

View Article and Find Full Text PDF

Fatty acid synthase in high and low lipid-producing strains of Mucor circinelloides: identification, phylogenetic analysis, and expression profiling during growth and lipid accumulation.

Biotechnol Lett

September 2025

Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.

Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.

View Article and Find Full Text PDF

Transcription factor MaAP-1 regulates conidiation patterns via YAP domain binding to the MaPom1 promoter in Metarhizium acridum: Implications for enhancing fungal biocontrol efficiency.

Pestic Biochem Physiol

November 2025

School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China; Nationa

Entomopathogenic fungi such as Metarhizium acridum are pivotal for sustainable pest management, yet the industrial conidial production is hindered by low yields and environmental sensitivity. Transcriptional regulation provides key targets for engineering strain modification. AP-1 transcription factors (TFs) are well-known for their roles in fungal growth, development, conidiation, pathogenicity and stress tolerance across various fungi.

View Article and Find Full Text PDF