Article Synopsis

  • The study identifies that 15-20% of severe COVID-19 cases in unvaccinated patients are linked to impaired type I interferon (IFN) activity due to genetic factors or autoantibodies.
  • A genome-wide analysis of 3269 unvaccinated severe COVID-19 patients revealed significant associations with rare variants in the TLR7 gene, which may increase susceptibility to life-threatening COVID-19.
  • Findings suggest that rare genetic variants related to TLR3 and TLR7 play a major role in severe COVID-19 risk, especially in younger patients under 60 years of age, indicating potential areas for further research and understanding of COVID-19 severity.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases.

Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.

Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P = 1.1 × 10) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3-8.2], P = 2.1 × 10). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1-2635.4], P = 3.4 × 10), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3-8.4], P = 7.7 × 10). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10).

Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074346PMC
http://dx.doi.org/10.1186/s13073-023-01173-8DOI Listing

Publication Analysis

Top Keywords

type ifn
24
life-threatening covid-19
20
ifn immunity
16
rare predicted
8
immunity genes
8
tlr3- tlr7-dependent
8
tlr7-dependent type
8
autoantibodies type
8
unvaccinated patients
8
recessive model
8

Similar Publications

Enhanced ISGylation via USP18 Isopeptidase Inactivation Fails to Mitigate the Inflammatory or Functional Course of Coxsackievirus B3-Induced Myocarditis.

Cell Physiol Biochem

September 2025

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, 10117 Berlin, Germany.

Background/aims: The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear.

View Article and Find Full Text PDF

The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.

View Article and Find Full Text PDF

Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

Allergic asthma is an inflammatory airway disease influenced by genetic and environmental factors and orchestrated by imbalance between T helper 1 cell (Th1) and two immune responses. Inflammation contributes to pathological changes and remodeling in tissues such as the vascular, lung, heart, and beds. The purpose for this study was to evaluate the effects of allergic asthma on heart pathology and remodeling.

View Article and Find Full Text PDF