Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Besides apple mosaic virus (ApMV), apple necrotic mosaic virus (ApNMV) has also been found to be associated with apple mosaic disease. Both viruses are unevenly distributed throughout the plant and their titer decreases variably with high temperatures, hence requiring proper tissue and time for early and real-time detection within plants. The present study was carried out to understand the distribution and titer of ApMV and ApNMV in apple trees from different plant parts (spatial) during different seasons (temporal) for the optimization of tissue and time for their timely detection. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) was carried out to detect and quantify both viruses in the various plant parts of apple trees during different seasons. Depending on the availability of tissue, both ApMV and ApNMV were detected in all the plant parts during the spring season using RT-PCR. During the summer, both viruses were detected only in seeds and fruits, whereas they were detected in leaves and pedicel during the autumn season. The RT-qPCR results showed that during the spring, the ApMV and ApNMV expression was higher in leaves, whereas in the summer and autumn, the titer was mostly detected in seeds and leaves, respectively. The leaves in the spring and autumn seasons and the seeds in the summer season can be used as detection tissues through RT-PCR for early and rapid detection of ApMV and ApNMV. This study was validated on 7 cultivars of apples infected with both viruses. This will help to accurately sample and index the planting material well ahead of time, which will aid in the production of virus-free, quality planting material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059951PMC
http://dx.doi.org/10.3390/v15030795DOI Listing

Publication Analysis

Top Keywords

mosaic virus
16
apmv apnmv
16
tissue time
12
apple mosaic
12
plant parts
12
real-time detection
8
apple
8
apple necrotic
8
necrotic mosaic
8
mosaic disease
8

Similar Publications

P3IPs activate autophagy by disrupting the GAPC2-ATG3 interaction and target TuMV 6K2 for degradation.

New Phytol

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.

Our previous work identified p3-interacting protein (P3IP) as a novel plant factor that interacts with rice stripe virus p3 protein and activates autophagy to mediate its degradation, thereby restricting infection. However, the mechanism of P3IP-mediated autophagy and the evolutionary conservation of its antiviral function remain unknown. This study demonstrates that two Arabidopsis thaliana homologs, AtP3IP and AtP3IPH (Arabidopsis P3IP homologs, AtP3IPs), similarly activate autophagy and confer resistance to turnip mosaic virus (TuMV).

View Article and Find Full Text PDF

Engineering resistance genes against tomato brown rugose fruit virus.

Sci China Life Sci

September 2025

MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.

View Article and Find Full Text PDF

Indole-based natural product for plant protection: Discovery of alkaloid barrettin and its derivatives as novel antiviral and antifungal agents.

Pestic Biochem Physiol

November 2025

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China. Electronic address:

The extensive use of highly toxic and residual pesticides has a significant negative impact on agricultural production and the ecological environment. The development of new green antiviral agents has become a major demand for ensuring the development of green ecological agriculture. Indole alkaloids are widely present in nature and have diverse biological activities.

View Article and Find Full Text PDF

Potato virus Y (PVY) is one of the most economically detrimental phytoviruses affecting global Solanaceae, possessing challenges in agrochemical control. The structural elucidation of PVY coat protein (CP) offers opportunities for the rational design of CP-targeted antivirals; however, the feasibility of identifying lead compounds via virtual screening remains largely unexplored. Herein, we report the successful case of structure-based virtual screening leveraging PVY CP, enabling the identification of a structurally novel lead with a unique mechanism of action.

View Article and Find Full Text PDF

Wheat yellow mosaic virus (WYMV) is the main cause of wheat yellow mosaic disease. Although its regulation of protein translation and interactions with host proteins are well-studied, independent regulation of the virus genome is poorly understood. This study performed in vitro experiments investigating replication regulation by the 5' UTR and 3' UTR of WYMV RNA2.

View Article and Find Full Text PDF