98%
921
2 minutes
20
River systems are a key environmental recipient of macroplastic pollution. Understanding the sources of macroplastic to rivers and the mechanisms controlling fate and transport is essential to identify and tailor measures that can effectively reduce global plastic pollution. Several guidelines exist for monitoring macroplastic in rivers; yet, no single method has emerged representing the standard approach. This reflects the substantial variability in river systems globally and the need to adapt methods to the local environmental context and monitoring goals. Here we present a critical review of methods used to measure macroplastic flows in rivers, with a specific focus on opportunities for methods testing, harmonisation, and quality assurance and quality control (QA/QC). Several studies have already revealed important findings; however, there is significant disparity in the reporting of methodologies and data. There is a need to converge methods, and their adaptations, towards greater comparability. This can be achieved through: i) methods testing to better understand what each method effectively measures and how it can be applied in different contexts; ii) incorporating QA/QC procedures during sampling and analysis; and iii) reporting methodological details and data in a more harmonised way to facilitate comparability and the utilisation of data by several end users, including policy makers. Setting this as a priority now will facilitate the collection of rigorous and comparable monitoring data to help frame solutions to limit plastic pollution, including the forthcoming global treaty on plastic pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.119902 | DOI Listing |
Environ Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China.
Synthetic antioxidants and plasticizers have emerged as environmental contaminants to which prenatal exposure is widespread, raising concerns about adverse pregnancy outcomes. This study aimed to investigate the association between prenatal exposure to a mixture of synthetic antioxidants and plasticizers and the risk of spontaneous preterm birth (SPB), alongside underlying molecular responses. A nested case-control design was established, including 80 SPB cases and 170 matched healthy controls.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8563, Japan. Electronic address:
Existing studies have identified a substantial amount of invisible floating debris in low-visibility marine environments, in addition to debris on the surface and seabed. These suspended pollutants represent a persistent and dynamic threat to marine ecosystems and maritime safety. Although sonar technology facilitates debris monitoring in low-visibility waters, the automatic extraction of small and weakly contrasted debris targets remains a critical challenge.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Research Institute for Applied Mechanics, Kyushu University, Japan.
Effective reduction of oceanic plastic pollution requires scalable and objective monitoring methods that go beyond traditional human-based surveys. This review synthesizes recent advances in remote sensing and AI-driven image analysis for detecting macro-plastic litter. Peer-reviewed studies published up to 2024 were systematically selected from the Scopus database, focusing on applications of remote sensing platforms including webcams, drones, balloons, aircraft, and satellites for monitoring plastic litter in coastal, riverine, and other aquatic environments.
View Article and Find Full Text PDFWaste Manag
September 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
This study investigated the pyrolysis of mixed medical waste (MMW) in an indirectly heated rotary kiln, focusing on the effects of operating parameters (filling ratio, heat source temperature, and rotation speed) on the heat transfer performance and product distribution. The pyrolysis behaviors of individual components (cotton swabs, paper, bandages, and plastics) and their composite mixtures were characterized using thermogravimetric-differential thermal analysis (TG-DTA). The heat transfer characteristics, chemical reaction properties, kiln operating parameters, and interactions between the processes were also investigated.
View Article and Find Full Text PDF