Effect of fiber-bound polyphenols from highland barley on lipid oxidation products of cooked pork during in vitro gastrointestinal digestion.

J Sci Food Agric

National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The gastrointestinal (GI) tract is a major site of lipid oxidation, and the lipid oxidation products are related to an increased risk of various chronic diseases. In this study, the inhibition capacity of bound-polyphenol rich insoluble dietary fiber (BP-IDF) from highland barley (HB) to lipid oxidation was evaluated during simulated GI digestion.

Results: We found that the level of lipid hydroperoxides (LOOH) and aldehydes were significantly inhibited when highland barley bound-polyphenol rich insoluble dietary fiber (HBBP-IDF) co-digestion with cooked pork. The lipid oxidation products were more effectively scavenged during simulated gastric digestion, with inhibition of 77.4% for LOOH, 52.3% for malondialdehyde, 46.5% for 4-hydroxy-2-hexenal and 48.7% for 4-hydroxy-2-nonenel, respectively. The fiber-bound polyphenols are the principal scavengers of lipid oxidation products.

Conclusion: These findings suggest that HBBP-IDF could be used as a functional ingredient able to scavenge lipid oxidation products across the GI tract. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.12581DOI Listing

Publication Analysis

Top Keywords

lipid oxidation
28
oxidation products
16
highland barley
12
fiber-bound polyphenols
8
lipid
8
barley lipid
8
cooked pork
8
bound-polyphenol rich
8
rich insoluble
8
insoluble dietary
8

Similar Publications

Sodium Orthovanadate (SOV) mitigates alcohol & alcohol plus high-fat diet (HFD)-induced hepatotoxicity in rats.

Cell Mol Biol (Noisy-le-grand)

September 2025

Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.

Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.

View Article and Find Full Text PDF

The ameliorative effect of Lactiplantibacillus plantarum SCS2 on DSS-induced murine colitis.

Arch Microbiol

September 2025

School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.

The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.

View Article and Find Full Text PDF

Fatty acid-binding protein 4 (FABP4) is a cytosolic lipid chaperone predominantly expressed in adipocytes. It has been shown that targets adipose tissues and resides in adipocytes. However, how manipulates adipocytes to redirect nutrients for its benefit remains unknown.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia and associated with severe complications, including cardiovascular diseases, neuropathy, nephropathy, and retinopathy. Although synthetic antidiabetic drugs are available, the side effects and limited long-term effectiveness of these medications highlight the urgent need for safer, more potent alternative therapies. L.

View Article and Find Full Text PDF

Organelle stresses and energetic metabolisms promote endothelial-to-mesenchymal transition and fibrosis via upregulating FOSB and MEOX1 in Alzheimer's disease.

Front Mol Neurosci

August 2025

Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.

Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.

Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.

View Article and Find Full Text PDF