98%
921
2 minutes
20
Background: The gastrointestinal (GI) tract is a major site of lipid oxidation, and the lipid oxidation products are related to an increased risk of various chronic diseases. In this study, the inhibition capacity of bound-polyphenol rich insoluble dietary fiber (BP-IDF) from highland barley (HB) to lipid oxidation was evaluated during simulated GI digestion.
Results: We found that the level of lipid hydroperoxides (LOOH) and aldehydes were significantly inhibited when highland barley bound-polyphenol rich insoluble dietary fiber (HBBP-IDF) co-digestion with cooked pork. The lipid oxidation products were more effectively scavenged during simulated gastric digestion, with inhibition of 77.4% for LOOH, 52.3% for malondialdehyde, 46.5% for 4-hydroxy-2-hexenal and 48.7% for 4-hydroxy-2-nonenel, respectively. The fiber-bound polyphenols are the principal scavengers of lipid oxidation products.
Conclusion: These findings suggest that HBBP-IDF could be used as a functional ingredient able to scavenge lipid oxidation products across the GI tract. © 2023 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.12581 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.
Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.
View Article and Find Full Text PDFmBio
September 2025
Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
Fatty acid-binding protein 4 (FABP4) is a cytosolic lipid chaperone predominantly expressed in adipocytes. It has been shown that targets adipose tissues and resides in adipocytes. However, how manipulates adipocytes to redirect nutrients for its benefit remains unknown.
View Article and Find Full Text PDFInt J Vitam Nutr Res
August 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, 1000 Dhaka, Bangladesh.
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia and associated with severe complications, including cardiovascular diseases, neuropathy, nephropathy, and retinopathy. Although synthetic antidiabetic drugs are available, the side effects and limited long-term effectiveness of these medications highlight the urgent need for safer, more potent alternative therapies. L.
View Article and Find Full Text PDFFront Mol Neurosci
August 2025
Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.
Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.
Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.