98%
921
2 minutes
20
In the present study, we evaluated the effects of kaempferol on bone marrow-derived mast cells (BMMCs). Kaempferol treatment significantly and dose-dependently inhibited IgE-induced degranulation, and cytokine production of BMMCs under the condition that cell viability was maintained. Kaempferol downregulated the surface expression levels of FcεRI on BMMCs, but the mRNA levels of FcεRIα, β, and γ-chains were not changed by kaempferol treatment. Furthermore, the kaempferol-mediated downregulation of surface FcεRI on BMMCs was still observed when protein synthesis or protein transporter was inhibited. We also found that kaempferol inhibited both LPS- and IL-33-induced IL-6 production from BMMCs, without affecting the expression levels of their receptors, TLR4 and ST2. Although kaempferol treatment increased the protein amount of NF-E2-related factor 2 (NRF2)-a master transcription factor of antioxidant stress-in BMMCs, the inhibition of NRF2 did not alter the suppressive effect of kaempferol on degranulation. Finally, we found that kaempferol treatment increased the levels of mRNA and protein of a phosphatase SHIP1 in BMMCs. The kaempferol-induced upregulation of SHIP1 was also observed in peritoneal MCs. The knockdown of SHIP1 by siRNA significantly enhanced IgE-induced degranulation of BMMCs. A Western blotting analysis showed that IgE-induced phosphorylation of PLCγ was suppressed in kaempferol-treated BMMCs. These results indicate that kaempferol inhibited the IgE-induced activation of BMMCs by downregulating FcεRI and upregulating SHIP1, and the SHIP1 increase is involved in the suppression of various signaling-mediated stimulations of BMMCs, such as those associated with TLR4 and ST2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059252 | PMC |
http://dx.doi.org/10.3390/ijms24065997 | DOI Listing |
Plant Foods Hum Nutr
September 2025
Graduate School of Food and Nutritional Sciences, Toyo University, 48-1, Oka, 351-8501, Asaka, Saitama, Japan.
Pea shoots (Pisum sativum) are well known to have nutritional benefits when consumed raw; however, the effects of home cooking on their bioactive compounds remain unclear. Therefore, we investigated how different cooking methods affect the antioxidant activity and stability of antioxidants. Our evaluation revealed that antioxidant activity is preserved by steaming but significantly reduced by microwaving and boiling, which also causes weight loss during cooking.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Pharmacy, The Third Department, Air Force Special Service Sanatorium, Hangzhou, Zhejiang, China.
Background: Asthma is a chronic respiratory disease characterized by complex etiology and marked heterogeneity. It is one of the most prevalent chronic airway conditions in children, with increasing prevalence in recent years. The Suting Pill (STP), a traditional Chinese medicine for childhood asthma, has an unclear mechanism.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
Kaempferol (KMF) is a dietary flavonoid exhibiting profound immunomodulatory effects across multiple immune cell populations. This review synthesizes current insights into how KMF regulates diverse immune cell populations and its therapeutic potential in inflammatory and immune-related disorders. KMF exhibits multifaceted effects on T cells.
View Article and Find Full Text PDFFood Chem (Oxf)
December 2025
Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
Coconut flesh, the solid endosperm, of coconut, which is rich in fat, protein and polyphenols. To investigate the impact of ultrasound treatment on the biosynthesis of polyphenols in tender coconut flesh during storage, the targeted metabolomic and transcriptomic analyses were employed. A total of 36 phenolic compounds were identified, of which catechin, epicatechin, gossypol and vanillic acid were the most abundant ones in 'Hainan Tall' coconut flesh.
View Article and Find Full Text PDF