Metabolite and Proteomic Profiling of Serum Reveals the Differences in Molecular Immunity between Min and Large White Pig Breeds.

Int J Mol Sci

Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pig diseases seriously threaten the health of pigs and the benefits of pig production. Previous research has indicated that Chinese native pigs, such as the Min (M) pig, has a better disease resistance ability than Large White (LW) pigs. However, the molecular mechanism of this resistance is still unclear. In our study, we used serum untargeted metabolomics and proteomics, interrogated to characterize differences in the molecular immunities between six resistant and six susceptible pigs raised in the same environment. A total of 62 metabolites were identified as being significantly exhibited in M and LW pigs. Ensemble feature selection (EFS) machine learning methods were used to predict biomarkers of metabolites and proteins, and the top 30 were selected and retained. Weighted gene co-expression network analysis (WGCNA) confirmed that four key metabolites, PC (18:1 (11 Z)/20:0), PC (14:0/P-18: 0), PC (18:3 (6 Z, 9 Z, 12 Z)/16:0), and PC (16:1 (9 Z)/22:2 (13 Z, 16 Z)), were significantly associated with phenotypes, such as cytokines, and different pig breeds. Correlation network analysis showed that 15 proteins were significantly correlated with the expression of both cytokines and unsaturated fatty acid metabolites. Quantitative trait locus (QTL) co-location analysis results showed that 13 of 15 proteins co-localized with immune or polyunsaturated fatty acid (PUFA)-related QTL. Moreover, seven of them co-localized with both immune and PUFA QTLs, including proteasome 20S subunit beta 8 (PSMB8), mannose binding lectin 1 (MBL1), and interleukin-1 receptor accessory protein (IL1RAP). These proteins may play important roles in regulating the production or metabolism of unsaturated fatty acids and immune factors. Most of the proteins could be validated with parallel reaction monitoring, which suggests that these proteins may play an essential role in producing or regulating unsaturated fatty acids and immune factors to cope with the adaptive immunity of different pig breeds. Our study provides a basis for further clarifying the disease resistance mechanism of pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056118PMC
http://dx.doi.org/10.3390/ijms24065924DOI Listing

Publication Analysis

Top Keywords

pig breeds
12
unsaturated fatty
12
differences molecular
8
large white
8
disease resistance
8
network analysis
8
analysis proteins
8
fatty acid
8
co-localized immune
8
proteins play
8

Similar Publications

Research Progress on Ferroptosis Regulation of Female Reproduction.

Biol Trace Elem Res

September 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Ferroptosis is a form of iron-regulated cell death that plays a critical role in various aspects of female reproductive system development. These processes include the normal estrous cycle, ovarian formation, follicular maturation, ovulation, and pregnancy, all of which are essential for maintaining reproductive health in female animals. However, excessive iron leads to the accumulation of reactive oxygen species within cells, disrupting intracellular redox balance, inducing mitophagy, membrane rupture, and lipid peroxidation, which can damage tissues and cells, ultimately resulting in ferroptosis.

View Article and Find Full Text PDF

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is a significant flavivirus that poses a threat to public health, as it induces encephalitis in humans and reproductive disorders in sows. We have recently identified that zinc finger protein 33B (ZNF33B) is required for JEV infection by CRISPR-based functional genomic screening, yet the precise functions and mechanisms are not fully comprehended. In this study, ZNF33B was found to be involved in JEV infection, wherein it bound with JEV RNA to enhance its stability during replication.

View Article and Find Full Text PDF

Copper (Cu) supplementation is essential in pig nutrition; however, its effects on performance, trace element accumulation in edible tissues, and environmental excretion require careful evaluation. In the present study a total of 24 male, castrated fattening pigs of two different hybrid mast lines (11 weeks of age) were divided according to their initial body weight (25.8 ± 3.

View Article and Find Full Text PDF

Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.

View Article and Find Full Text PDF