98%
921
2 minutes
20
Pig diseases seriously threaten the health of pigs and the benefits of pig production. Previous research has indicated that Chinese native pigs, such as the Min (M) pig, has a better disease resistance ability than Large White (LW) pigs. However, the molecular mechanism of this resistance is still unclear. In our study, we used serum untargeted metabolomics and proteomics, interrogated to characterize differences in the molecular immunities between six resistant and six susceptible pigs raised in the same environment. A total of 62 metabolites were identified as being significantly exhibited in M and LW pigs. Ensemble feature selection (EFS) machine learning methods were used to predict biomarkers of metabolites and proteins, and the top 30 were selected and retained. Weighted gene co-expression network analysis (WGCNA) confirmed that four key metabolites, PC (18:1 (11 Z)/20:0), PC (14:0/P-18: 0), PC (18:3 (6 Z, 9 Z, 12 Z)/16:0), and PC (16:1 (9 Z)/22:2 (13 Z, 16 Z)), were significantly associated with phenotypes, such as cytokines, and different pig breeds. Correlation network analysis showed that 15 proteins were significantly correlated with the expression of both cytokines and unsaturated fatty acid metabolites. Quantitative trait locus (QTL) co-location analysis results showed that 13 of 15 proteins co-localized with immune or polyunsaturated fatty acid (PUFA)-related QTL. Moreover, seven of them co-localized with both immune and PUFA QTLs, including proteasome 20S subunit beta 8 (PSMB8), mannose binding lectin 1 (MBL1), and interleukin-1 receptor accessory protein (IL1RAP). These proteins may play important roles in regulating the production or metabolism of unsaturated fatty acids and immune factors. Most of the proteins could be validated with parallel reaction monitoring, which suggests that these proteins may play an essential role in producing or regulating unsaturated fatty acids and immune factors to cope with the adaptive immunity of different pig breeds. Our study provides a basis for further clarifying the disease resistance mechanism of pigs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056118 | PMC |
http://dx.doi.org/10.3390/ijms24065924 | DOI Listing |
Biol Trace Elem Res
September 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Ferroptosis is a form of iron-regulated cell death that plays a critical role in various aspects of female reproductive system development. These processes include the normal estrous cycle, ovarian formation, follicular maturation, ovulation, and pregnancy, all of which are essential for maintaining reproductive health in female animals. However, excessive iron leads to the accumulation of reactive oxygen species within cells, disrupting intracellular redox balance, inducing mitophagy, membrane rupture, and lipid peroxidation, which can damage tissues and cells, ultimately resulting in ferroptosis.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
Japanese encephalitis virus (JEV) is a significant flavivirus that poses a threat to public health, as it induces encephalitis in humans and reproductive disorders in sows. We have recently identified that zinc finger protein 33B (ZNF33B) is required for JEV infection by CRISPR-based functional genomic screening, yet the precise functions and mechanisms are not fully comprehended. In this study, ZNF33B was found to be involved in JEV infection, wherein it bound with JEV RNA to enhance its stability during replication.
View Article and Find Full Text PDFArch Anim Nutr
September 2025
Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
Copper (Cu) supplementation is essential in pig nutrition; however, its effects on performance, trace element accumulation in edible tissues, and environmental excretion require careful evaluation. In the present study a total of 24 male, castrated fattening pigs of two different hybrid mast lines (11 weeks of age) were divided according to their initial body weight (25.8 ± 3.
View Article and Find Full Text PDFReprod Domest Anim
September 2025
National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.
View Article and Find Full Text PDF