Pseudo-transistors for emerging neuromorphic electronics.

Sci Technol Adv Mater

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial synaptic devices are the cornerstone of neuromorphic electronics. The development of new artificial synaptic devices and the simulation of biological synaptic computational functions are important tasks in the field of neuromorphic electronics. Although two-terminal memristors and three-terminal synaptic transistors have exhibited significant capabilities in the artificial synapse, more stable devices and simpler integration are needed in practical applications. Combining the configuration advantages of memristors and transistors, a novel pseudo-transistor is proposed. Here, recent advances in the development of pseudo-transistor-based neuromorphic electronics in recent years are reviewed. The working mechanisms, device structures and materials of three typical pseudo-transistors, including tunneling random access memory (TRAM), memflash and memtransistor, are comprehensively discussed. Finally, the future development and challenges in this field are emphasized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035954PMC
http://dx.doi.org/10.1080/14686996.2023.2180286DOI Listing

Publication Analysis

Top Keywords

neuromorphic electronics
16
artificial synaptic
8
synaptic devices
8
pseudo-transistors emerging
4
neuromorphic
4
emerging neuromorphic
4
electronics
4
electronics artificial
4
synaptic
4
devices cornerstone
4

Similar Publications

UVA/B-Selective Skin-Inspired Nociceptors Based on Green Double Perovskite QDs-Sensitized 2D Semiconductor toward Reliable Human Somatosensory System Simulation.

J Phys Chem Lett

September 2025

Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Achieving UVA/B-selective, skin-inspired nociceptors with perception and blockade functions at the single-unit device level remains challenging. This is because the device necessitates distinct components for every performance metric, thereby leading to complex preparation processes and restricted performance, as well as the absence of deep UV (UVB and below)-selective semiconductors. Here, to address this, we develop a structure-simplification skin-inspired nociceptor using a reverse type-II CuAgSbI/MoS heterostructure.

View Article and Find Full Text PDF

The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.

View Article and Find Full Text PDF

Complexity of brain-like signals in self-organised nanoscale networks.

Neural Netw

August 2025

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand. Electronic address:

The biological brain is comprised of a complex, interconnected, self-assembled network of neurons and synapses. This network enables efficient and accurate information processing, unsurpassed by any other known computational system. Percolating networks of nanoparticles (PNNs) are complex, interconnected, self-assembled systems that exhibit many emergent brain-like characteristics.

View Article and Find Full Text PDF

Two-dimensional ferroelectric tunnel junctions (2D FTJs) have attracted extensive attention in recent years, which mainly change the height of the tunnel barrier via manipulation of the ferroelectric polarization. However, it is very challenging to realize the high tunneling electroresistance (TER) of FTJs based on the barrier height. Here, we report the 2D FTJs using a unique structure with semiconducting MoS/α-InSe/monolayer graphene, where ferroelectric polarization of α-InSe shifts the barrier height by 1.

View Article and Find Full Text PDF