98%
921
2 minutes
20
RRM2B encodes the p53-inducible small subunit (p53R2) of ribonucleotide reductase, a key protein for mitochondrial DNA (mtDNA) synthesis. Pathogenic variants in this gene result in familial mitochondrial disease in adults and children, secondary to a maintenance disorder of mtDNA. This study describes two patients, mother and son, with early-onset chronic progressive external ophthalmoplegia (PEO). Skeletal muscle biopsy from the latter was examined: cytochrome c oxidase (COX)-negative fibres were shown, and molecular studies revealed multiple mtDNA deletions. A next-generation sequencing gene panel for nuclear-encoded mitochondrial maintenance genes identified two unreported heterozygous missense variants (c.514 G > A and c.682 G > A) in the clinically affected son. The clinically affected mother harboured the first variant in homozygous state, and the clinically unaffected father harboured the remaining variant in heterozygous state. In silico analyses predicted both variants as deleterious. Cell culture studies revealed that patients' skin fibroblasts, but not fibroblasts from healthy controls, responded to nucleoside supplementation with enhanced mtDNA repopulation, thus suggesting an in vitro functional difference in patients' cells. Our results support the pathogenicity of two novel RRM2B variants found in two patients with autosomal recessive PEO with multiple mtDNA deletions inherited with a pseudodominant pattern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s10038-023-01144-2 | DOI Listing |
NPJ Syst Biol Appl
May 2025
Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.
Lung adenocarcinoma (LUAD) is a highly heterogenous and aggressive form of non-small cell lung cancer (NSCLC). The use of genome-wide gene co-expression networks (GCNs) has been paramount to describe changes in the transcriptional regulatory programs found between diseased and healthy states of LUAD. Recently, studies have shown that multiple cancerous phenotypes share a distinct GCN architecture, suggesting that network topology holds promise for understanding disease pathology.
View Article and Find Full Text PDFHum Mol Genet
May 2025
John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, United Kingdom.
Mitochondrial DNA (mtDNA) depletion syndromes (MDDS) are rare, clinically heterogeneous mitochondrial disorders resulting from nuclear variants in genes of the mitochondrial DNA replication or maintenance machinery. Supplementation with pyrimidine deoxynucleosides have been beneficial in patients and mice with TK2-related MDDS, however, it has not been systematically explored in other forms of MDDS. To investigate the effect of deoxynucleoside supplementation in mitigating the disease in mitochondrial DNA depletion due to pathogenic RRM2B variants, we generated a novel zebrafish knock-out model of this disease and studied the effect of different combinations of deoxynucleosides.
View Article and Find Full Text PDFSci Rep
January 2025
The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan Province, China.
Sepsis, characterized as a systemic inflammatory response triggered by pathogen invasion, represents a continuum that may progress from mild systemic infection to severe sepsis, potentially culminating in septic shock and multiple organ dysfunction syndrome. A pivotal element in the pathogenesis and progression of sepsis involves the significant disruption of oncological metabolic networks, where cells within the pathological milieu exhibit metabolic functions that diverge from their healthy counterparts. Among these, purine metabolism plays a crucial role in nucleic acid synthesis.
View Article and Find Full Text PDFBackground: Asthma, a prevalent chronic inflammatory disorder, is shaped by a multifaceted interplay between genetic susceptibilities and environmental exposures. Despite strides in deciphering its pathophysiological landscape, the intricate molecular underpinnings of asthma remain elusive. The focus has increasingly shifted toward the metabolic aberrations accompanying asthma, particularly within the domain of pyrimidine metabolism (PyM)-a critical pathway in nucleotide synthesis and degradation.
View Article and Find Full Text PDFMol Genet Genomic Med
June 2024
Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases Lanzhou, Gansu Provincial Maternity and Child-Care Hospital, Gansu, China.
Background: Hearing loss (HL) is the most frequent sensory deficit in humans, with strong genetic heterogeneity. The genetic diagnosis of HL is very important to aid treatment decisions and to provide prognostic information and genetic counselling for the patient's family.
Methods: We detected and analysed 362 Chinese non-syndromic HL patients by screening of variants in 15 hot spot mutations.