98%
921
2 minutes
20
Sepsis, characterized as a systemic inflammatory response triggered by pathogen invasion, represents a continuum that may progress from mild systemic infection to severe sepsis, potentially culminating in septic shock and multiple organ dysfunction syndrome. A pivotal element in the pathogenesis and progression of sepsis involves the significant disruption of oncological metabolic networks, where cells within the pathological milieu exhibit metabolic functions that diverge from their healthy counterparts. Among these, purine metabolism plays a crucial role in nucleic acid synthesis. However, the contribution of Purine Metabolism Genes (PMGs) to the defense mechanisms against sepsis remains inadequately explored. Leveraging bioinformatics, this study aimed to identify and substantiate potential PMGs implicated in sepsis. The approach encompassed a differential expression analysis across a pool of 75 candidate PMGs. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were employed to assess the biological significance and pathways associated with these genes. Additionally, Lasso regression and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) methodologies were implemented to identify key hub genes and evaluate the diagnostic potential of nine selected PMGs in sepsis identification. The study also examined the correlation between these hub PMGs and related genes, with validation conducted through expression level analysis using the GSE13904 and GSE65682 datasets. The study identified twelve PMGs correlated with sepsis, namely AK9, ENTPD3, NUDT16, GMPR2, PKM, RRM2B, POLR2J, POLE3, ADCY3, ADCY4, ADSSL1, and AMPD1. Functional analysis revealed their involvement in critical processes such as purine nucleotide and ribose phosphate metabolism. The diagnostic capability of these PMGs to effectively differentiate sepsis cases underscored their potential as biomarkers. This research elucidates twelve PMGs associated with sepsis, providing valuable insights into novel biomarkers for this condition and facilitating the monitoring of its progression. These findings highlight the significance of purine metabolism in sepsis pathogenesis and open avenues for further investigation into therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696736 | PMC |
http://dx.doi.org/10.1038/s41598-024-82998-0 | DOI Listing |
CNS Neurosci Ther
September 2025
The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
Aim: To investigate the effects and mechanisms of S-adenosylmethionine (SAM) from deer antler on improving depression-like behaviors in chronic unpredictable mild stress (CUMS) mice.
Methods: The CUMS method was used to establish a mouse depression model. The relationship between SAM and HIF-1α was analyzed by small molecule-protein docking and molecular dynamics simulation.
Kardiologiia
September 2025
Department of Cardiology, The Ninth Medical Center, Chinese PLA General Hospital.
Background Hyperuricemia (HUA) frequently coexists with coronary artery disease (CAD) and is linked to adverse cardiovascular outcomes. The long-term impact of urate-lowering therapy (ULT) on clinical outcomes, including all-cause mortality and major adverse cardiovascular events (MACEs), in CAD patients after percutaneous coronary intervention (PCI) has not been determined. That was the aim of this study.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China.
Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.
View Article and Find Full Text PDFAging Cell
September 2025
Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA.
Aging leads to chronic inflammation that is linked to aging-associated conditions and diseases. Multiple immune pathways become activated during aging, posing a challenge to effectively reduce aging-associated inflammation. SIRT2, an NAD-dependent deacetylase, suppresses several immune pathways that become activated during aging and may represent an attractive target to broadly dampen aging-associated inflammation.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Background: Janus kinase inhibitors (JAKIs) are small molecules used orally to treat inflammatory and hematological disorders. They have demonstrated impressive efficacy across multiple indications. However, concerns have emerged regarding their safety profile.
View Article and Find Full Text PDF