98%
921
2 minutes
20
Luteolin as a phytogenic algicide can inhibit the growth and microcystins (MCs) release of Microcystis, a dominant genus during cyanobacterial blooms, but how phosphorus (P) level impacts luteolin effect on its growth and MC-pollution risk is unclear. By employing Microcystis aeruginosa as test alga, this study addressed this concern and explored response mechanisms from novel insights of relationship between extracellular polysaccharide (ex-poly) and protein (ex-pro) contents and MC-production/release. At each P level (0.05-5 mg/L), rising luteolin dose more greatly inhibited Microcystis growth and MC-pollution risk, with growth inhibition ratio of around 10%-30%, 20%-50% and 40%-90% for 3, 6 and 12 mg/L luteolin, respectively, but almost increasingly enhanced cellular ability of MC-production/conservation and total and bound ex-poly/ex-pro production. Rising P level promoted Microcystis growth and intracellular/extracellular MCs content (IMC, EMC) in test system at each luteolin dose, thus higher P level weakened algicidal and MC-removal effects of luteolin, indicating that P-decrease was required for stronger application outcome of luteolin. Total and bound ex-poly/ex-pro amount were positively correlated with cellular MC-production/conservation ability, IMC and EMC, which constituted cooperative stress-defense of Microcystis at each P level. Besides, rising luteolin dose posed stronger algicidal effect by inactivating gene expression involving peroxidase synthesis (especially at P-limitation), photosynthesis and P acquisition, while rising P level alleviated algicidal and MC-pollution inhibition effects of luteolin by enhancing gene expression involving N acquisition and peroxidase synthesis. This study shed novel insights for P-dependent effect and mechanisms of luteolin on toxigenic Microcystis growth and MC-pollution control, which guided to mitigating toxigenic Microcystis-dominated cyanobacterial blooms in different P-level water areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.114794 | DOI Listing |
J Hazard Mater
April 2025
School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanj
Harmful algal blooms are a critical eco-environmental issue with severe impacts on aquatic ecosystems and human health. Tannic acid (TA) has been suggested as an effective algal bloom control, but the molecular mechanisms of its interaction with algae cells and its effects on algal toxin release remain unclear. This study tracked toxin production and release in the toxigenic species Microcystis aeruginosa (M.
View Article and Find Full Text PDFChemosphere
October 2023
College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215
Luteolin continuous-release microsphere (CRM) has promising algicidal effect against Microcystis, but how nitrogen (N) level impacted CRM effects on Microcystis growth and microcystins (MCs) pollution was never tracked along long term. This study revealed that luteolin CRM exerted long-term and robust inhibitory effects on Microcystis growth and MC-pollution by sharply decreasing extracellular and total MCs content at each N level, with growth inhibition ratio of 88.18%-96.
View Article and Find Full Text PDFEcotoxicol Environ Saf
April 2023
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
Luteolin as a phytogenic algicide can inhibit the growth and microcystins (MCs) release of Microcystis, a dominant genus during cyanobacterial blooms, but how phosphorus (P) level impacts luteolin effect on its growth and MC-pollution risk is unclear. By employing Microcystis aeruginosa as test alga, this study addressed this concern and explored response mechanisms from novel insights of relationship between extracellular polysaccharide (ex-poly) and protein (ex-pro) contents and MC-production/release. At each P level (0.
View Article and Find Full Text PDFHarmful Algae
March 2020
National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address: huangxiaohuanjnu@yahoo
Microcystis aeruginosa bloom releases microcystins (MCs) into global aquatic environment, which other living organisms can ingest the released MCs. The toxic effects of MCs on organisms are amplified through the food chain, threatening human and animal health. Lanthanum(III) [La(III)], a pollutant in aquatic environments worldwide, has been confirmed to stimulate MC synthesis in M.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2018
School of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China.
Freshwater aquaculture ponds are important artificially regulated aquatic ecosystems which provide a large number of freshwater fish products in China. The cyanobacteria bloom and microcystin (MC) pollution caused by anthropogenic eutrophication have attracted much attention due to their toxic effects. To provide an insight into the cyanobacterial problem in the ponds, the environmental parameters and MCs of a typical artificial pond in the Yangtze River Delta region of China were monitored and studied from May to December 2015.
View Article and Find Full Text PDF