Liquid-liquid phase separation of immiscible polymers at double emulsion interfaces for configurable microcapsules.

J Colloid Interface Sci

Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China. Electronic address:

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liquid-liquid phase separation at complex interfaces is a common phenomenon in biological systems and is also a fundamental basis to create synthetic materials in multicomponent mixtures. Understanding the liquid-liquid phase separation in well-defined macromolecular systems is anticipated to shed light on similar behaviors in cross-disciplinary areas. Here we study a series of immiscible polymers and reveal a generic phase diagram of liquid-liquid phase separation at double emulsion interfaces, which depicts the equilibrium structures by interfacial tension and polymer fraction. We further reveal that the interfacial tensions in various systems fall on a linear relationship with spreading coefficients. Based on this theoretical guideline, the liquid-liquid phase separation can be modulated by a low fraction of amphiphilic block copolymers, leading the double emulsion droplets configurable between compartments and anisotropic shapes. The solidified anisotropic microcapsules could provide unique orientation-sensitive optical properties and thermomechanical responses. The theoretical analysis and experimental protocol in this study yield a generalizable strategy to prepare multiphase double emulsions with controlled structures and desired properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.03.072DOI Listing

Publication Analysis

Top Keywords

liquid-liquid phase
20
phase separation
20
double emulsion
12
immiscible polymers
8
emulsion interfaces
8
liquid-liquid
5
separation
5
phase
5
separation immiscible
4
double
4

Similar Publications

A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.

View Article and Find Full Text PDF

Mitochondria-associated condensates maintain mitochondrial homeostasis and promote lifespan.

Nat Aging

September 2025

State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.

Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria.

View Article and Find Full Text PDF

CpG-A induces liquid-liquid phase separation of HMGB1 to activate the RAGE-mediated inflammatory pathway.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.

View Article and Find Full Text PDF

This study focuses on developing an analytical method to efficiently extract and concentrate several adipate and phthalate plasticizers that can migrate from plastic packaging into various wound disinfectants. The study employed an approach that combined dispersive micro solid phase extraction with dispersive liquid-liquid microextraction using ZIF-4 as an adsorbent. The adsorbent was thoroughly characterized to understand its properties.

View Article and Find Full Text PDF