Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

"Solvent-in-salt" electrolytes (high-concentration electrolytes (HCEs)) and diluted high-concentration electrolytes (DHCEs) show great promise for reviving secondary lithium metal batteries (LMBs). However, the inherently sluggish Li transport of such electrolytes limits the high-rate capability of LMBs for practical conditions. Here, we discovered a "tug-of-war" effect in a multilayer solvation sheath that promoted the rate capability of LMBs; the pulling force of solvent-nonsolvent interactions competed with the compressive force of Li-nonsolvent interactions. By elaborately manipulating the pulling and compressive effects, the interaction between Li and the solvent was weakened, leading to a loosened solvation sheath. Thereby, the developed electrolytes enabled a high Li transference number (0.65) and a Li (50 μm)‖NCM712 (4 mA h cm) full cell exhibited long-term cycling stability (160 cycles; 80% capacity retention) at a high rate of 0.33C (1.32 mA cm). Notably, Li (50 μm)‖LiFePO (LFP; 17.4 mg cm) cells with a designed electrolyte reached a capacity retention of 80% after 1450 cycles at a rate of 0.66C. An 6 Ah Li‖LFP pouch cell (over 250 W h kg) showed excellent cycling stability (130 cycles, 96% capacity retention) under practical conditions. This design concept for an electrolyte provides a promising path to build high-energy-density and high-rate LMBs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993850PMC
http://dx.doi.org/10.1039/d2sc06620cDOI Listing

Publication Analysis

Top Keywords

capacity retention
12
rate capability
8
lithium metal
8
metal batteries
8
high-concentration electrolytes
8
capability lmbs
8
practical conditions
8
solvation sheath
8
cycling stability
8
electrolytes
5

Similar Publications

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF

The integration of Mn in NaMnFe(PO)PO (NMFPP) enhances the energy density but compromises the Na mobility and structural stability due to limited electron hopping and pronounced Jahn-Teller effects. To address this, a structurally compatible anionic substitution strategy is implemented by partially replacing PO with bulkier and less electronegative SiO groups. The reinforced cathode exhibits enhanced rate performance, which is attributed to lattice expansion induced by the larger SiO units, thereby facilitating Na diffusion and reducing impedance during charge-discharge processes, as supported by GITT and DRT analyses.

View Article and Find Full Text PDF

Anchoring Ligand Electron Enables Robust Metal-Oxygen Coordination Toward 4.5 V O3-Type Sodium-Ion Battery Cathodes.

Angew Chem Int Ed Engl

September 2025

College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

High-voltage operation enables sodium-sufficient O3-type layered oxides to approach the maximum achievable energy densities for practical sodium-ion batteries (SIBs). This high-voltage regime, however, induces structural degradation strongly correlated with oxygen redox activity, a mechanism still incompletely resolved. Using prototypical O3-type NaNiFeMnO (NFM) as a model system, we identify the origin of this instability as a detrimental feedback loop between σ-type oxygen redox and cation migration.

View Article and Find Full Text PDF

Effects of camellia seed cake protein on the printability, antioxidant activity and digestive performance of 3D-printed plant protein meat analogues.

Food Chem

September 2025

Jiaxing Institute of Future Food, Jiaxing 314050, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:

This paper aims to explore the feasibility of enhancing the printing performance of 3D-printed meat analogues by varying the substitution amount of camellia seed cake protein (SCP) in the edible ink system based on proteins and polysaccharides. It covers the ink formulation, rheological properties and product analysis. The addition of SCP can significantly enhance the apparent viscosity, mechanical strength, and water retention capacity of the inks.

View Article and Find Full Text PDF