98%
921
2 minutes
20
"Solvent-in-salt" electrolytes (high-concentration electrolytes (HCEs)) and diluted high-concentration electrolytes (DHCEs) show great promise for reviving secondary lithium metal batteries (LMBs). However, the inherently sluggish Li transport of such electrolytes limits the high-rate capability of LMBs for practical conditions. Here, we discovered a "tug-of-war" effect in a multilayer solvation sheath that promoted the rate capability of LMBs; the pulling force of solvent-nonsolvent interactions competed with the compressive force of Li-nonsolvent interactions. By elaborately manipulating the pulling and compressive effects, the interaction between Li and the solvent was weakened, leading to a loosened solvation sheath. Thereby, the developed electrolytes enabled a high Li transference number (0.65) and a Li (50 μm)‖NCM712 (4 mA h cm) full cell exhibited long-term cycling stability (160 cycles; 80% capacity retention) at a high rate of 0.33C (1.32 mA cm). Notably, Li (50 μm)‖LiFePO (LFP; 17.4 mg cm) cells with a designed electrolyte reached a capacity retention of 80% after 1450 cycles at a rate of 0.66C. An 6 Ah Li‖LFP pouch cell (over 250 W h kg) showed excellent cycling stability (130 cycles, 96% capacity retention) under practical conditions. This design concept for an electrolyte provides a promising path to build high-energy-density and high-rate LMBs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993850 | PMC |
http://dx.doi.org/10.1039/d2sc06620c | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.
MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.
View Article and Find Full Text PDFACS Nano
September 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
The integration of Mn in NaMnFe(PO)PO (NMFPP) enhances the energy density but compromises the Na mobility and structural stability due to limited electron hopping and pronounced Jahn-Teller effects. To address this, a structurally compatible anionic substitution strategy is implemented by partially replacing PO with bulkier and less electronegative SiO groups. The reinforced cathode exhibits enhanced rate performance, which is attributed to lattice expansion induced by the larger SiO units, thereby facilitating Na diffusion and reducing impedance during charge-discharge processes, as supported by GITT and DRT analyses.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
High-voltage operation enables sodium-sufficient O3-type layered oxides to approach the maximum achievable energy densities for practical sodium-ion batteries (SIBs). This high-voltage regime, however, induces structural degradation strongly correlated with oxygen redox activity, a mechanism still incompletely resolved. Using prototypical O3-type NaNiFeMnO (NFM) as a model system, we identify the origin of this instability as a detrimental feedback loop between σ-type oxygen redox and cation migration.
View Article and Find Full Text PDFFood Chem
September 2025
Jiaxing Institute of Future Food, Jiaxing 314050, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
This paper aims to explore the feasibility of enhancing the printing performance of 3D-printed meat analogues by varying the substitution amount of camellia seed cake protein (SCP) in the edible ink system based on proteins and polysaccharides. It covers the ink formulation, rheological properties and product analysis. The addition of SCP can significantly enhance the apparent viscosity, mechanical strength, and water retention capacity of the inks.
View Article and Find Full Text PDF